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The Heyting-Semantics of propositions is constituted on the basis of an isomorphism
between the proofs of a proposition and the terms of an appropriate typed A-Calculus. It
represents a profound alternative to the traditional Tarskian semantics, in that it models
proof rather than {ruth. In this dissertation, we propose a generalization of this conception
to the (untyped) A-Calculus—a calculus for which a Tarskian semantics already exists. The
critical abstraction involved is an appropriate formal notion of a proof-object (of A-terms):
we arrive at this by suitably refining the notion of a partial evaluation of a A-term. The
collection of the sets of proof-objects of the terms is inductively structured into dependent
and impredicative theory of constructive types, under certain operations corresponding to
the standard type-theoretic ones. The constructions are carried out within the framework
of fibered categories, and remarkably, the (internal) category of types is seen to be a (full)
sub-category of the partial equivalence relations (on the closed term model)—thus yielding
an embedding into the Realizability topos model of impredicative calculi. We obtain the
standard denotational semantics of the terms in the topos, and show the resulting class of
domain-theoretic objects to be internally cartesian closed. We also show that the “external”
(partial) ordering on the proof-objects may be formulated as intrinsic synthetic structure on

the basis of a classifier of recursively enumerable sub-objects.
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This dissertation is an essay within the tradition of formal semantics. Its intellectual
descent may be traced to the works of principally three major thinkers: Frege, Tarski and
Heyting. At the basis of Frege'’s identification of Sensc—as that part of meaning that de-
termined reference completely, there was a critical, yet not very precise notion of structure.
For instance, it was the logical structure of propositions (or sentences), induced on the basis
of the rules of inference (of a specifie logical theory), that was relevant for the determina-
tion of their truth—and not the grammatical structure (or syntax). In Tarski’s subsequent
re-formulation of the theory in terms of the (necessary and sufficient) conditions of validity,
the role of structure is taken over by the algebraic properties of certain universal models.
However the theory forced a complete (or “global”) evaluation because of which only certain
kinds of object-language expressions could have a well-defined meaning ([83]); thus its scope
was restricted on the basis of a strong referential discipline.

1t was with A. Heyting that a radical alternative to Tarskian semantics became available.
Working on the basis of a re-formulation of the notion of proof provided by the Brouwer-
Heyting-Kolmogorov interpretation ([87]), he proposed that one model the proofs of propo-
sitions instcad of their truth. Uunder this interpretation, the proofs were formalized as the
terms of a theory of Types; thus, to each proposition corresponded the Type of its proofs—
also known as the Curry-Howard Type—and we had the genesis of constructive type theory
([53, 27, 87]). The Types epitomized operational information and the theory provided an
cffective formal notion of intensional isomorphism that entailed semantic equivalence.

Our study is animated by the perspective that a truly general conception of semantics—-as

was that of Farski—must take every linguistic system as its field. If that is accepted then
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we ask whether the notion of a constiuctive semantics admits a valid application to another
linguistic domain—namely the A-Calculus itself —for which there exists already a Tarskian
semantics ([70]). In the case of propositions, it may be recalled that the constructive theory
of types could only be formulated on the basis of a fundamental re-formulation of the notion
of a proof according to the Brouwer-Ileyting-Kolmogorov interpretation. Hence, we are led
to believe that the critical abstraction underlying any answer to the current claim would be
some formal notion of a proof-object of the A-terms. In this quest we are guided principally
by three criteria. )
1. We would nced to capture the information corresponding to “local” (or partial) evalu-
ation, on the basis of which we may individuate some notion entailing semantic equiv-

alence ([89]).

2. We should be able to induce, on the basis of the sets of proof-objects of the pure A-
terms, and under some suitable notion of operations defined on them corresponding to
the rules of Type dependency and quantification, a full constructive theory of Types

(specifically, a Theory of Constructions) ([38]).

3. We should be able to exploit the partial-order structure inherent in the notion of a
partial evaluation (of the pure A-terms), towards the construction of a class of objects
that could sustain the constitution of the standard denotations of the A-expressions
([5, Chapter 18 §3]). Morcover, wo sophisticate the last criterion by requiring that the
construction of (canonical) denotations from the proofs should be carried out within
a higher-order intuitionistic universe, in which the denotational objects would essen-
tially be sets (with standard function spaces); this could be taken then to represent a

rudimentary abstract logic of programs denotations (cf. [2)).

We note that the last criterion gives us a framework to relate the Tarskian semantics to the
Heytingian: for propositions, this relationship— between the semantics of proofs to that of
provability (or (intuitionistic) truth)—shows up in the topos interpretation(s) of constructive
types ([62, 34)).

The crux of our work is the identification of a single general and formal notion which

We arrive at the notion through successive re-
finements: starting from certain topological considerations relating to the conv
infinite B-reductions of

satisfies each of the criteria listed above.

ergence of

solvable terms, we identify a certain formal object called a residue (of

a term). The notion had heen identified carlier on other considerations (I5, Chapter 14 §3])

and is similar to that of an approzimale normal form of a term. For any A-term z, the set
b



of residues of all terms y such that z —5 y can be shown to determine the computational
behavior of a term completely: terms with identical such sets are semantically equivalent and
accordingly we take the set as a first approximation to the notion of a (Curry-Howard) Type
of proof-objects of a A-term.

We attempt to set up a (first-order) theory of dependent Types on the basis of the (bi-)
categorical equivalence between relatwely cartesian closed categories and Martin-Lof Type
theories (without equality types; [38]). Critical to this construction is the refinement of the
notion of a residue—as representing an equivalence class of the relation induced by that of
mutual 7-subsumption among Bohm trees of terms ([5, Chapter 10 §3]). Thus, the Type of
a term is understood as a partial equivalence relation; we induce, on this basis, a theory that
entails those judgements of dependency that are sanctioned by the (sub-) term structure of
the calculus, and recursively generalized from this basis. Thus, on this formulation, a proof-
object is conceived as any such equivalence class of A-terms, and this is the conception we
retain throughout the sequel.

Subsequently and on the basis of this notion, we extend the first-order theory to a full
impredicative and dependent calculus—essentially a Theory of Constructions ([38]). The
significant aspect of the argument is to model the Order of Types, and impredicative quan-
tification over it. The constructions are intricate and carried out within the framework of
Jibered categories, more precisely, the theory of comprehension categories developed recently
in the study of generalized type systems ([40]). We prove that the object of Types forms a
full internal sub-category ([34]) of the base category of our fibration, and characterize its limit
structure as relative cartesian closure (in a suitable internal sense). We take the induction of
this higher-order Type theory to constitute a viable program of the constructive semantics
of the A-Calculus.

From this point, we turn towards exploring the constitution of the denotational domains of
the terms, within an intuitionistic universe. We show that our notion of a proof-object permits
an elegant embedding of the internal category of Types into the Moggi-Hyland Realizability
Topos—as a full internal sub-category ([33, 34])—in fact, as a full sub-category of the (internal
categorical form of the) partial equivalence relations over the closed term model of the A-
Calculus ([48]). We demonstrate the order-theoretic structure on the objects of this category,
and devise a method of completion (with respect to recursively enumerable directed sets)
that yields an internal category of directed complete partial orders in the topos ([68]). This
category is a generalization of the corresponding Heytling-algebra object of the denotations
of propositions and we carry through the analogy formally by showing that the category is

(internally) cartesian closed. Finally we remedy the extrinsic character of this construction
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by re-formulating the order-structure synthetically—i.e. on the basis of an intrinsic order
induced by a certain classifier of recursively enumerable sub-objects ([35, 58]). We show that
the object of all possible proof-objects constitutes a dominance ([67]) and hence an object
of computable truth-values. Qur final result is.that our category of domain-theoretic objects
is actually a sub-category of the replete objects ([35, 86]) identified recently as a canonical

category of domains internal to the topos.
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Chapter 1

Introduction

This dissertation is an essay within the tradition of formal semantics; and true to its nature as
an essay, it is exploratory rather than ampliative. It does not seek an answer to any question
that it poses, or that is already posed: it argues for the validity of posing a certain question
at all. It suggests the generalization of a certain conception of semantics to a domain for
which it is not even clear, ab initio, whether the conception makes any sense. A thesis of this
nature requires justification—for its conception as well as for its method—and the purpose
of this introduction is to provide this. While the justification for its method may reasonably
be sought within the technology available in the discipline, that for its conception has to
delve deeper—to the philosophical lineage of its foundational concepts; accordingly, we shall
spend a fair amount of time in this explication. The intellectual descent of the conception
that I propose to generalize, derives from the works of principally three major thinkers in
the semantic tradition—Frege, Tarski and Heyting, and we discuss critically, some of their

seminal ideas in the sequel.

1.1 Frege and the concept of Sense

It may justifiably be said of Frege that his most radical contribution to philosophy was the def-
inition of its foundational question to be the theory of meaning (or logic in his terminology)—
and not epistemology as posited by Descartes ([17, pages 665-670]). This was his basic intel-
lectual project and it was articulated through his philosophical commitment to free Kant’s
conception of a priori knowledge from every trace of the pure intuition that had been con-
ceived as its ground. This articulation was itself achieved through a subtle shift in focus:
in Kant’s conception, analytic a priori knowledge was rather trivial—it was the synthetic a

priori which was really a profound matter, and which required the ground of pure intuition.
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Frege reversed the emphasis by re-defining the analytic, thus displacing the synthetic from its
pre-eminent place; and pursued the former within the domain of mathematics—specifically
arithmetic ([12, pages 62-82], (17, pages 628-632]).

Most of this thinking took place in the phase of Frege's work epitomized in the publi-
cation of his Die Grundlagen der Arilhmetik.in 1884; in the subsequent phase(s), the prior
conceptualization of the analytic, as well as the general project of rendering a completely
objective account of the nature of a priori knowledge, was deepened with regard.to both
pre-supposition and entailment. Analyticity was,.for Frege, a cognitive status for sentences:
a sentence was analytic by virtue of the objective and cognitively available methods for estab-
lishing its truth. The consideration of such methods led to that of the information embedded
within the sentence (and its constituents) on the basis of which such methods could be con-
structed and justified; and this led to the discovery of the seminal concept of Sense (as distinct
from reference, or denotation) ([17, pages 631-632]).

For Frege, the Sense of a sentence or any complex referring expression was its “mode of
designation (or presentation);” it is that part of the meaning of an expression that is relevant
to determination of what it designates (in Frege’s conception, a sentence was simply a complex
term which designated a truth value); it is that part of the information, objectively available
in a sentence (or referring term), a grasp of which enable, in principle, the determination
of its truth (respectively, reference). Apprehension of the meaning of a sentence implies
apprehension of its Sense—while empirically it is possible of course that this apprehension
entails in no way the knowledge of its truth or reference. It is precisely on this account that
the theory of meaning requires the concept of Sense over and above that of reference ([17,
pages 81-109, 631- 636]).

Paradoxically, both the significance and the weakness of this concept lay in the stipulation
that it be objectively cognitively available The stipulation was significant in that it under-
scored Frege's basic project of rendering an analysis of meaning free of every psychological
or subjective element; it was weak because neither Frege, nor his followers were ever really
explicit about the precise site and form of the Sense—nor the conditions of its recovery from
the surface syntax of expressions.

It was intuitively clear that the Sense-information could only be given on the basis of some
notion of the structure of expressions ([23]): it was not very clear how one was to understand
this notion of structure with any conceptual economy. For instance, it was seldom the case—
and definitely not so for the formalized logical language that Frege had constructed—that the
grammatical structure (or the syntax) of expressions coincided with the logical structure (that

by virtue of which the truth of sentences was determined). One could surcly be generous in
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this instance and identify the Sense with grammatical structure—but the resulting theory
would lack conceptual economy; in any case, it was not even necessary that grammatical
structure should subsume the logical. While it is clear that the notion of logical structure is
inscribed within the inferential rules of the language (if such a concept is applicable), it is
not clear if we can infer, on their basis, something like the Sense of individual expressions:
for, the inferential rules are typically framed in terms of sets of (meta-)expressions, and there
does not seem to be an easy way to localize this information to individual expressions.

It can fairly be said that this critical problem is not adequately understood even now!, and
our essay is profoundly animated by it. In order to understand the problem in its generality,
we propose an extension of its scope to calculi other than logical—specifically the A-Calculus,
which is a functional calculus with an expressiveness adequate to represent every computable
function. In the context of such calculi we shall use the concept of Sense interchangeably
with that of intension—strictly speaking, a narrower and more specialized notion—and that
of reference interchangeably with that of extension.

The relevant issues are thrown into sharper perspective once we generalize them to func-
tional calculi. Intensions in the case of programming languages may be taken to be the
“computational information” encoded in the syntax of the programs, while extensions, the
(partial) functions the programs compute. Yet, ambiguity threatens even this: the computa-
tional information has to be distilled from its syntax obviously, and as such, this could only
take the form of a (sufficiently) abstract operational semantics: unfortunately, Computer
Science lacks such a notion?. On the other hand, it is known, that the denotation of an
algorithm is by no means captured through any standard (set-theoretic) notion of a function:
some notion of sequentiality is inherent to the idea of an algorithm, and standard denotational
models in functional domains lose the full abstraction property® ([10, 81]) on this account.

The conception of Sense was undoubtedly radical, and it was only on its basis that the
theory of meaning could be studied analytically: its imprecision is not to be taken to be
symptomatic of its ill-posedness, but an indication of its informativeness. As it turned out,
much of the history of the philosophy of language after Frege was a response to him, and

an effort to clarify the problems inherent in his conception of meaning. In our context,

'In fact, recent writings of J. -Y. Girard suggests a revision of the notion of Sense towards what he calls the
“Geometry (of interaction)”—roughly, the factoring out from syntax, all information redundant to the essential
finite processes through which the semantics (operational as well as denotational) of complex expressions is
detcrmined ([25))

2as noted by Girard ([27, page 14]); structural operational semantics in the style of Plotkin is manifestly
ad hoc and would not do for this purpose

*whereby exactly those terms arc cquated in the referential domain as may be exhibited to be semantically
equivalent (sce definition in the sequel).
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the next major punctuation of this intellectual territory was effected by Alfred Tarski, after

whom the term “semantics” acquired an entirely different—and what can be said to be its

modern—connotation.

1.2 Tarski and the concept of Truth

The paradigm of model-theoretic truth inaugurated by Tarski underlies all subsequent exten-
sional theories of meaning. The basic idea was simple and far-reaching: define truth as va-
lidsty—that is satisfiability in all interpretation structures. Once this is done we may abolish
the troublesome intensions (Senses) altogether, and define meaning to be the set of necessary
and sufficient conditions for the truth of cvery sentence of the language ((84, 83]). The crux
of the argument for the validity of this definition lies in the fact that the truth-conditions
(we shall refer to them as T-rules or T-conditions in the sequel) are framed precisely in terms
of the structural descriptions on the basis of which, on the Fregean account, extensions were
determined in the first place. Morcover, a technical distinction was made between the lan-
guage for which a theory of meaning was being supplied—the object language—and one in
which the T-conditions were expressed -the meta-language. Thus, the structural informa-
tion that went into the constitution of the Sense could be entirely incorporated (within the
T'-conditions), while its conceptual buiden was delegated to an extensional referential realn
through the mediation of the meta-language; this did render a regressive theory, but only in
the last instance. In any case, Tarski advanced a powerful argument for the meta-language,
saying that only thus may we avoid the semantic paradoxes (e.g. the Liar paradox). In
fact, on his account, the question of meaning for a language which could function as its own
meta-language was not really a well-posed one: such languages would always gencrate para-
doxical expressions for which no meaning could be assigned—and hence the theory may not
be complete ([83]).

The theory generalizes easily to functional calculi: taking truth to be the denotation of
logical sentences, we may formulate an analogous theory for, say the A-Calculus, by defining
meaning as the set of conditions governing the denotation of the terms in universal models—
that is, models into which, roughly speaking, all other models may be embedded?. It is
important to note that at no stage dooes ‘Tarski equate meaning with denotation—or even the
set of denotations in all possible models: he defines meaning in terms of the (set of) conditions
governing vahdity. Yet the weakness of the formulation lies precisely in the requirement

that these conditions be expressed in a meta-language. This construct is no mere technical

p e R
A similar concept 1s available for logic-—namely, the Herbrand structur
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it is a point at which the entire validity of the argument is hinged. We cannot evade the
fact that without a meta-language the theory may never be complete, that only by virtue
of some rather drastic constraints on the object-language can we expunge an infinity of
sentences that we indubitably understand, but to which the theory can assign no (non-trivial) .
meaning. This fundamental weakness manifests itself in certain other concrete ways which
we elucidate below—especially since it is only vis-a-vis them that the theoretical advantages
of the subsequent proposal of Heyting may be clearly apprehended.

The T-rules reveal themselves to be be uninformative—both operationally, and, surpris-
ingly enough, denotationally. We take the latter case first. An adequate theory of meaning
has to characterize that part of the information ideally available in an expression, governing
its denotation (across specific interpretation structures): such is the understanding we in-
herit from Frege and I take this to be reasonably beyond controversy. The Tarskian theory
lacks this conception and hence can provide no such general characterization: typically, the
process through which denotations (in some canonical sense corresponding to validity, or to
universal models) are determined on the basis of the structural descriptions, is an induction
in the meta-language over some general algebraic structure® ([84]). It may justifiably be
argued that the meaning of an expression should consist only in the structural information
intrinsic to a language, and should in no way contain any reference to algebraic properties
of extrinsic structures. On the other hand the operational aspect of the deficiency is that
the T-rules remain opaque to semantic equivalence: roughly speaking, two terms are said
to be semantically equivalent if they have an identical “behavior” in every term context—
under some notion of behavioral equivalence—typically, based on minimal (i.e. to the point
of definedness) or complete evaluations. It is reasonable to expect that such pairs of terms
should have isomorphic intensions (or Senses). The T-rules give us no method to compute
such isomorphisms.

The opacity of the T"-rules to the operational aspect of term semantics is very much more
evident in respect of the inference or rewrite rules of the language. While it is true that
term structure determines denotations, it does so only in the last instance; in truth, it is
the inference or rewriting process which does so directly, and it is in this that an operational
semantics—i.e. the specific contributions of terms to the semantics of the contexts they come
to be embedded in—is to be sought. We have already made some remarks on this point in
the section on Frege. Remarkably, these contributions constitute information that is “local”

in nature: in general terms need only to be partially evaluated in the computation of the

This might be a boolcan lattice for the propositional case, cylindric algebras for highcr-orders, or a domain
(isomorphic to its function space—say D) for the A-Calculus.
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overall semantics of the embedding term contexts ((89]). The T-rules on the other hand,

. « " .
force complete evaluation in every case, and consequently, provide only “global” semantic

information. As a result, the rules lose application in certain cases of perfectly meaningful
sentences (for instance, the Liar paradox in-the case of Logic

marked earlier. This deficiency is in fact symptomatic of the unconstrained infinitary nature

)—a point which we have re-

of the T-rules—a point noted by Girard in [25].

In view of the points listed above, we may say that the semantic information content of a
term is epitomized within the set of its contributi'ons to the overall semantics of possible term
contexts, and that this set consists of information which is finitary and of a “local” nature;
moreover, a system of aggregation which can capture this information, may, in all possibility,
provide a basis on which term intensions may be represented and intensional isomorphisms
(entailing semantic equivalences) be computed. We shall see, in the subsequent theory of

lleyting, a system that can claim to do precisely this.

1.3 Heyting and the concept of Proof

At around the time that Tarski was advancing his semantic conception of Truth, an alternative
conception of semantics was emerging in another distinct conceptual tradition. This was
Constructive tradition—itself a ramification of Intuitionism; and the notion of semantics
it engendered received its first clear articulation in the work of A. Heyting ([8, 87]). The
essential idea was simple and radical: model the proofs, instead of the truth—with proof
understood in an appropriate constructive sense. Thus, in this theory of semantics—which
we would henceforth refer to as Heyting Semantics—to every proposition would correspond
the collection of its proofs. Moreover with the appropriate constructive formulation of the
notion of proof, these collections would be structured into a system of syntactic entities, and
inscribed within a calculus of inferencing (cf. [48, 27] for excellent studies). This system
could thus be thought of as constituting a theory of Types (after the formulations of Russell
and Gédel) and it was as such that this constructive theory of semantics developed under
Martin-L&f (51, 53]) and Girard ([27])(amongst others). )

The pivotal notion involved here was that of proof; classical proofs were deficient in
two major respects: first, they had an infinitary formulation; second, they behaved non-
deterministically when sought 1o be reduced to a canonical form on the basis of Gentzen’s
llauptsatz ([27, Appendix B]). Actually, both were aspects of a specific problem in the for-
mulation of the structural rules of classical logic (the Weakening and Contraction rules to be

precisc ([25, pages 77-81])). The precise details are unimportant here; the significant point is
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that classical proofs could only have degenerate models. Thus, the point of departure of the
constructive theory was a re-formulation of the notion of proof itself. The relevant conceptual
shift was provided by the Brouwer-Heyting-Kolmogorov interpretation of the logical connec-
tives ([87, Section 3]), and the natural deduction style of presentation of the inference rules
valid under the interpretation ([27, Chapter 2]). The remarkable point in this conceptualiza-
tion was that every constructive proof was isomorphic to a term of a typed A-Calculus—and
thus we had an isomorphism between the proofs of a proposition and the terms of the Type
corresponding to it—an isomorphism that has come to be known in Computer Science as the
Curry-Howard isomorphism ([27, Chapter 3]).

It is important to note that the constructive paradigm of semantics still retained the
Tarskian conception, though at one order removed from its traditional point of application.
We still give a Tarskian semantics to the theory of Types, since without that, the latter would
merely syntactic objects possibly lacking even consistency. The point is that we retain it just
as a criterion for the formal consistency of the theory of Types—which latter represents the
actual semantics under the current paradigm. Conceived of in this way, the theory overcomes
much of the defects of the earlier one.

We shall argue that the theory of Types constructed on the basis of the Curry-Howard
isomorphism (and modulo the logical equivalences of Constructive Type theory) may very well
claim to be a system of representation of the intensions of propositions. As such, the Typeofa
proposition can be seen to be informative both denotationally and operationally—remedying
a major deficiency of the Tarskian theory. The logico-syntactic structure of a Type yields
directly a formal and effective procedure for the construction of a term of that Type: any such
term being a proof of the corresponding proposition, we have an immediate criterion of its
(intuitionistic) truth—independent of any reference to extrinsic algebraic structures. On the
other hand, the inferential structure of the judgements of Constructive Type theory provide
a formal procedure for defining and demonstrating T'ype isomorphisms: morcover provably
isomorphic Types imply that the corresponding propositions are semantically equivalent—
under the notion of equivalence based on the complete evaluation of (the truth of) embedding
propositional contexts®. Thus, a Type functions as a kind of an “interface specification”
(¢f. [25, Section 1V.5]) and furnishes a formal informative criterion for operational (and
denotational) equivalence.

The significant aspect of the notion of a constructive Type, is its pure operational nature.

%The converse problem—i.e if semantically equivalent propositions have isomorphic Types—is a more
complex question; however, in the case of the A-Calculus as developed in this thesis, we have a straightforward
affirmative answer.
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The terms of a Type are but (the representations of) proofs—which are themselves the
transformations and analyses of sentences according to the inference rules of the language.
Every proof of a proposition being available as a term of the corresponding Type, we have
information about every possible way in which the proof of an embedding complex proposition
may incorporate one of th; embedded proposition. Thus, the Type of a term may be seen as
the complete representation of its operational semantics. The essence of the Brouwer-Heyting-
Kolmogorov understanding of a proof was its strictly finitistic nature, and this is embodied
in the constructive conception of semantics; witat is not that emphatic is the “local” aspect
of the operational information, and this is in fact a significant point of divergence between
the intuitionistic Tarskian semantics formulated in terms of sheaf models ([87, Chapter 14))
and constructive Type semantics. We shall make a more explicit comment on this in our
conclusion: however, in the subsequent development, we shall make a case for a more general
understanding of the notion of proof, and one which is sensitive to this aspect of “local”
(or partial) information. Arguably, the most significant aspect of the theory of Constructive
Types is its finitistic, constructive nature: consequently, constructive proofs, unlike classical
ones, are effective—in other words, they are representations of computable functions and
have non-degenerate models”. Moreover, the infinitary nature of the T-rules, which resulted
in their loss of application in certain valid cases, may be redressed (to a great extent) in the
constructive formulation.

The fundamental re-conceptualization attempted in this paradigm is undoubtedly rev-
olutionary, even though in its current form, it still leaves a great scope for deepening and
abstraction. For one, the syntax of the Type expressions is still too close to the syntax of the
propositions themselves—close enough to identify a easy syntactic isomorphism between the
two. If indeed the Types are to play the role of Fregean Senses, the notion of structure would
have to be re-formulated with a greater degree of abstraction. On the other hand, the concept
of partial evaluation is virtually absent within the current formulation; the concept of a Type
is still too closely tied to the notion of provability (or intuitionistic truth)—which again is
a matter of global or complete evaluation. This manifests itself in the uninhabited Types
for paradoxical expressions, which are indubitably meaningful. It is here that the concepts
of intuitionistic model theory—that is typically articulated as the Kripke-Joyal semantics
in sheaf categorics ([19])— could play a deepening role. Girard’s conception of a realm of
“geometric” objects underlying the syntactic proof-expressions ([25, pages 69, 91-98]) is ex-
tremely suggestive: Both the finitism of constructive proofs, and the partiality represented in

—
"Though recent research indicates that under certai

1 conditions, algorithms may be extracted from classical
proofs too (cf. [55])).
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the intnitionistic sheafl formulations point to the need for localized formulations—typical of
geometric objects. This is a provocative line of thought which we reserve for further comment

in the conclusion.

1.4 A Constructive semantics of the \-Calculus

With the preceding discussion, we may appreciate the intellectual context of our proposal—
which is, the generalization of Heyting's conception of semantics to functional calculi—
specifically the A-Calculus. The proposal carries a serious import: semantics, and specifically
formal semantics, is salient to any language and only to language; the A-Calculus is a formal
language and has already, a Tarskian (or denotational) semantics formulated principally by
D. S. Scott ([72, 73, 70]). It is thus evidence for the true generality of Heyting’s conception,
to have a well-defined application to the formal semantics of the A-Calculus.

As we have remarked in the very first paragraph, it is not even clear at this stage, what
could precisely be meant by the proposed notion. Thus, before we may progress with the
substantive theory, we have to clarify, in fact define, terms. The central concept in the con-
structive semantics of propositions is that of proof: as we have remarked, it was only through
the re-formulation of this notion on the basis of the Brouwer-Heyting-Kolmogorov interpre-
tation, that we could arrive at a non-trivial theory of Types. Thus, we would expect that
some notion of a proof-object would be the principal abstraction behind the proposed theory.
In the quest for this abstraction, we choose to be guided by principally three considerations,
which are discussed below.

We have already remarked that a system of aggregation designed to capture the informa-
tion corresponding to the contributions of the terms to the semantics of various embedding
term contexts, would provide us a basis on which term intensions could be represented and
intensional isomorphisms (entailing semantic equivalences) computed. Such contributions
being generally of the nature of partial evaluations, we come across precisely such a notion in
the theory of the A-Calculus. This is the notion of an approzimate normal form (|5, Chapter
14 §3]), used extensively in the theory of continuity and in the local structure analyses of
A-models. It is also known that if a pair of terms have identical sets of approximate normal
forms, they are semantically equivalent—in the sense of yielding equivalent head normal forms
of embedding contexts ([5, Chapter 10 §4, Chapter 19 §2], [89, Section 6]). Accordingly, we
take this (actually a slight refinement of this which we call a residue) as the first approxima-
tion to the notion of a proof-object. This decision commits us to the view that semantically

cquivalent terms should have the same Type—in other words, that for such terms, intensional
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isomorphism would be conceived as intensional identity. In fact, in the development of the

theory, we would define Types (intensions) for terms modulo semantic equivalence.

The second consideration sten;s from the requirement that the sets of proof-objects be
structured into a certain king of constructive- Type theory, known as the Theory of Construc-
tions. To appreciate this, we may review the precise format in which the Heyting semantics
of propositions is realized. The process consists of two steps: first, the construction of a
Type theory on the basis of the isomorphism between proofs of a proposition and the terms
of its corresponding Type; second, the Tarskian semantics of this theory in an appropriate
(sub-)category of sets and functions. The second step is essential, since without it we have
merely a system of syntactic objects of which we may not even assert formal consistency.
Variations in the initial logic of the propositions entails variations in the kind of Type theory
which we obtain. For our purpose, we shall consider a very general kind of constructive
Type theory known as the Theory of Constructions (cf. [38] for an excellent study), and
which corresponds to higher-order intuitionistic logic. The salient aspects of this theory is
the representations of dependent T'ypes (and thus, dependent sums and products), and of
impredicatively quantified (or polymorphic) Types. The theory is impredicative, and thus
consists of two strata—the Types and Orders. The Types correspond to the propositions (un-
der the Curry-Howard isomorphism), while the Orders represent the hierarchy of the domains
of impredicative quantification, and other sortal domains.

Thus, the first step of the constructive semantics may be characterized roughly as the in-
duction, on the basis of the propositional constants of the logical theory (and their construc-
tive proofs), of a canonical system of formal objects (namely, the Theory of Constructions),
under the rules of quantification over impredicative and other sortal domains. The second
step, in which we give a Tarskian semantics to the Theory of Constructions is mathematically
more delicate. A rigorous logical view of models commits us to provide the interpretation in
an universe of sets and functions—or to put it categorically, in a suitable full sub-category of
the category of sets with full function spaces®. Unfortunately, the interpretation of impred-
icative quantification requires that the sub-category be closed under internal limits, and the
classical logic of sets dictates that we may not have any such non-trivial full sub-category. As
is well-known, the remedy is to shift to intuitionistic logic, and thus from the boolean topos
of Sets to a general elementary topos. This does yield non-trivial models, and a canonical
construction towards this end is the topos of presheaves over the categorical form of the initial

Type theory ([62]). Hlowever, we arc still in the realm of the abstract, and historically, a “con-

®*This was motivation behind the attempts of both D S Scott ([74) and A M. Pitts((62]) to fully embed

(categorical) models of the pure and the polymorphic A-Calculus, respectively, in their pre-sheaf top
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crete” instance of an elementary topos model was discovered by Hyland and Moggi, and came
to be known as the Elfective ‘Topos (more generally, as a Realizability topos) ([33, 34, 36, 61)).
In this interpretation, the strata of Types was interpreted as the full sub-category of partial
equivalence relations over the combinatory algebra underlying the topos—and known as the
modest sets® (|61, 69]).

The constructive semantics of the A-Calculus is realized within an identical forinat. The
first step would be the induction, on the basis of the pure A-terms (actually equivalence
classes of terms, and the sets of their proof-objects), of a Theory of Constructions (in an
appropriate categorical form, known as a CC-Category (cf. [40])), and under the rules of
Type dependency and quantification. We shonld emphasize the fact that thesc rules are
eventually spelt out in terms of certain operations on the sets of proof-objects, and as such,
it is a criterion of the adequacy of the latter notion, that it admits such operations as well-
delined. In the resulting Type theory, the A-terms yield the constant ‘U'ypes; the rest of the
Types and Orders come from the induction process.

The third consideration is to have a framework within which a perspicuous connection
may be exhibited between the constructive semantics and the traditional denotational seman-
tics of the A-Calculus: for, in view of our remarks on the nature of intensional information
represented in the Types, the former should permit a complete determination of denota-
tional information. We recall that such a connection in the case of propositions was clearly
articulated in the topos interpretation itsclf: the proofs were structured into a small and
complete category of T'ypes, while the denotations— i.e. the truth values were available as
the global sections of the sub-object classifier. In the case of A-expressions, denotations are
traditionally taken in domains-- which are essentially algebraic complete partial orders. The
use of domains is profoundly related to the fact that the set of what we have called residues
admits a partial order structure and the set of such forms for any A-term is a directed set
under this order ([5, Chapter 14 §3]). Moreover, it can be shown that the set of all possible
such forms yields a domain under directed completion, and hence the directed set of residues
of any term has a least upper bound in this domain ({5, Chapter 10 §2]: this bonnd is pre-
cisely what may be taken as the denotation of the term in the canonical Bohmn tree model
of the Calenlus ([5, Chapter 18 §3]). Since the notion of a proof-object for a pure A-term is
essentially derived from that of a residue, we would want a framework where this process of
obtaining the canonical denotation of a term, from the Type of its proof-objects, would be

T be wore precise, the sub system of Types was steactured as a full wfernal sub-category (with the

reymsite completeness propertics)  meaning thereby, an internal category in the topos, isomorphic to a full
sub-category of the latter (in an appropriate fibered sense (82, 34, 61))).
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perspicuously displayed—and n the rigorous logical sensc of interpretation—i.e. in an uni-

; ion spaces. This icld a properl
verse of (possibly non-standard) sets with full function spaces. I'his would yicld a properly

logical account of extracting denotations {rom intensions, as well as make available to us, a
standard (set-theoretic) logicdo reason about the domains of these denotations.

A precise account of the intended methodology may be described as follows. We would
fully embed our category of Types as a full internal sub-category of the Moggi-Hyland Realiz-
ability Topos obtained from the closed term model of the A-Calculus. The resulting internal
category is then essentially a small category of gets, and we would identify a certain internal
(or synthetic) structure—essentially on the basis of a suitable object of computable truth val-
ues (cf. [35, 86])—around which we may perform the domain-theoretic construction which
yields us the denotations {of the pure A-terms) in the standard sense—as least upper bounds
of the corresponding sets of proof-objects. The whole construction would be carried out in-
ternally in the topos, and we are thus rendered a small category of synthetic domain-theoretic
objects (directed complete partial orders, or dcpos) which can sustain the usual notion of the
denotation of terms; morcover, this small category is logically one of sets, and we may reason
about them in the standard intuitionistic logic of sets.

It turns out that a simple refinement of the notion of a residue enables us to satisfy
all the considerations discussed above. The basic idea is to conceive of a residue as the
representative of an equivalence class of A-terins, under the relation induced by the mutual
1-subsumption relation among Béhm trees ([5, Chapter 10 §3]). The final notion of a proof-
object then, is that of an equivalence class under this relation: and thus, every A-term, and
in fact every Type, can be thought of as a partial equivalence relation on the closed term
model of the Calculus. Consequently, our category of (pre-)domains may be seen to be a full
sub-category of the (internal) category of the modest sets—a fact of considerable theoretical
significance. An exploration of the properties of this category reveals that it is (internally)
cartesian closed—in a remarkable analogy to the propositional case, where the corresponding
object of truth-values (denotations) was a lleyting algebra object.

With this, we may turn to the substantive development of the ideas discussed here. In
our understanding, the program of a general constructive semantics is a novel conception,
with deep mathematical and philosophical implication: it is a theory with a great scope
for abstraction, and whereby it may open up a truly general conception of information and

language. In this, onr efforts may be scen as the carving out of some initial territory.
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1.5 Overview
The development of the thesis is as follows.

Chapter 2. In this chapter we try to identify a first approximation to the formal notion
of a proof-object. We approach the problem from an apparently unrelated direction:
namely, we seek a purely topological criterion that will distinguish infinite 8-reduction
sequences of solvable terms as convergent, as opposed to the those of unsolvable ones.
We refine and adapt certain notions developed in the context of rewriting systems to
the A-Calculus (which is not one, in the technical sense), and come up with a notion
of a residue of a term, on the basis of which such a criterion can be formulated. We
propose to associate with any term, the set of its residues, anticipating that these
sets would subsequently be structured into a theory of Types. We explore the order-
theoretic properties of these sets, and prove that a pair of terms possessing identical
sets of residues would have the same Béhm trees, and thus be semantically equivalent

in an appropriate sense.

Chapter, 3. In this chapter explore the dependency structure of the theory of Types gener-
ated, eventunally, on the basis of the sets of residues of the pure A-terms. We present first
a version of Martin-Lof Type theory (without equality Types), that is essentially the
first-order fragment of the Theory of Constructions; and discuss its standard categorical
interpretation in relatively cartesian closed categories. Next, we present a formulation
within which our sets of residues may (inductively) generate a relatively cartesian closed
category—and thus a specific first-order dependent Type theory—under suitably de-
fined operations corresponding to dependent sums and products. In this formulation,
we conceive a residue as the representative of an equivalence class of a certain canonical
relation on the set of pure A-terms—this being the conception we shall retain eventually,

of a proof-object.

Chapter 4. In this chapter we present some of the theoretical tools we shall need to repre-
sent the later results in an clegant and abstract way. Dependency structure is ideally
interpreted in the framework of fibered categorics, and we present this theory in a form
that is well-adapted to the interpretation of Type structures—namely, the Comprehen-
sion Category framework extensively studied by B. Jacobs recently. We characterize
fiber-wise structure needed to model dependent sums and products, and representabil-
ity conditions needed to model dependency judgements. We prove some of the main

results we would utilize in the sequel.
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Chapter 5. In this chapter, we continne the explication of the theory behind the categorical

interpretation of (full) constructive T'ype theories. It is impredicative quantification (or

polymorphism) which is the most delicate to model, and we present the framework of
internal categories within which the forms of completeness required for the interpreta-
tion may be elegantly represented. We explicate the complementarity between internal
categorical and fibered modes of representation, and emphasize the usefulness of being
able to shift from one to the other. We present the remarkable notion of a full internal
sub-category and underscore the close relation between its limit structure, and that of
the ambicnt category; we use it to define structure in internal categories. We spend
some time in relating fibered and internal modes for base categories which do not have
all pullbacks, but only a basic display map structure. Finally, we present the full Theory
of Constructions, and an elegant categorical model described by B. Jacobs, and known

as a CC-Category.

Chapter 8. In this chapter, we complete the development of Chapter 3: we present the
induction of a (full) Theory of Constructions on the basis of the sets of residues (of
equivalence classes) of the pure terms, under operations corresponding to dependent
and impredicative forms of quantification. Methodologically, this is accomplished by
generating a CC-Category under the operations mentioned. This entails, on account
of the theory explicated in the previous chapter, that the sub-system of the Types
may be conceived as a full internal sub-category of the base category (of the CC-
Category), in fact what may be described as a full internal relatively cartesian closed
category. This accomplishes to a great extent, our objective of developing what we have
characterized as the constructive semantics of the calculus. The interpretation of the
Theory of Constructions in some suitable topos is quite standard, and we do not labour
it. Instead, in the sequel we address the question of developing some of the standard

denotational theory on the basis of our category of Types.

Chapter 7. In this chapter we present some of the theory behind a “concrete” topos model
of dependent and impredicative Type theory—namely the interpretation in the Moggi-
Iyland Realizability ‘Topos. We present some of standard structures involved in the
interpretation—specifically the (sub-)categorics of the w-sets and the modest sets. We
explicate the completeness structure needed to model polymorphism and dependency—
switching between internal and fibered modes of description. We explicate the notion of

the internal logic of the topos, and the interpretation of intuitionistic logic in the latter.

Finally, we embed the relevant categorical structures identified in the last chapter into
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this standard framework: we prove that thereby our category of Types is embedded as
a full internal sub-category of the w-sets (and hence of the realizability topos), that it
is internally a full sub-category of the category of the modest sets, and finally that it

has a certain restricted form of completeness when so embedded (relative to a certain

sub-category of the w-sets).

Chapter 8. In this chapter, we shall carry out some of the standard denotational construc-
tions within the topos of the previous chapter. Intuitively, the set of residues of a term
carries a partial order, and in fact is a directed set under it. The set of all residues
is a domain under directed completion, and a canonical denotation of a term may be
obtained as the least upper bound of its set of residues. We shall show that this intu-
ition is conserved even as we refine the notion of a residue into that of a proof-object
(i.e. an equivalence class) and thus in the category of Types embedded in the topos
as described in the previous chapter. We carry out the directed completion and obtain
thereby, a small category of domain-theoretic objects (in the topos); and carrying the
canonical denotations of the terms as least upper bounds of the corresponding Types.
We prove that this category is internal cartesian closed, in remarkable analogy to the
propositional case. Finally, we recast the constructions in a synthetic form: that is,
we identify a suitable object of computable truth-values, on the basis of which the
partial-order structure on the objects of our denotational category appears as intrinsic
structure. Thus, we have a category of (synthetic) domain-theoretic objects that can
sustain the standard denotations of the pure terms, and which are logically, a small

category of sets, with full function spaces.



Chapter 2

Residues

A formal analogy between the 'Type represented by a Proposition (under the Curry-lloward
isomorphism), and the Type represented by a A-term (under an analogous notion), can be
initiated if we have some idea of the objects that could function as the analogue of proofs
of propositions. A [fairly simple idca may aid us here: if a pair of propositions represent
isomorphic Types, then every propositional context has the same truth value when either of
the pair is substituted into it. Taking truth to be the reference of propositions, we would
be justified then, in looking for a class of objects correlated with each A-term, such that if
two such classes be isomorphic, the corresponding terms would cause cvery A-context to have
the same normal form under their substitution. Refining the notion of normal form to head
normal form—which may be be thought of as a minimal notion of reference (i.e. to the point

of definedness)—we would have the following precise formulation

/1 = /y = YC[].Clz) = Cly) (2.1)

where C[] is an arbitrary A-context, m =;, n means that the terms m and n have the same
head normal form, and [z is the notation we shall use for the Type of the term z. This
formulation indicates that we should look for the objects constituting [ z within the theory of
Solvability. Accordingly, we shall address first the conditions under which (a possibly infinite)

B-reduction sequence for a term may still be considered to yield a valid semantic value.

2.1 Convergence

Much of the argaments of this section were formulated by Wadsworth ([89]) and Barendregt

([5]). We re-arrange them in order to extract the information that would be significant for

our purpose.  As we are aware, letms having a normal form admit readily the notion of
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semantic value—which is simply the normal form itsclf, or some suitable interpretation of
it in a semantic domain. It is well-known, that of the remaining class of terms, not all
may be deemed as meaningless: the unsolvable terms may consistently be equated to some
meaningless token, while there exists a residual class which have no normal form, but may
be deemed meaningful'. Let us try to understand the situation by comparing the following
p-reduction sequences:
(Az.zz)(Az.22) — (Az.zz)(A2.27) —_
OO f(z2))(Az.f(22) — Aff(z.f(z2)(z.f(zz)) —
the first is an example of an unsolvable term (which we would denote as §2), that mnay be
thought of us meaningless; the second is a solvable term (which we would denote as Y),
which may be considered meaningful though it has an infinite reduction sequence. One of the
differences between the two cases which may strike us, is that the latter derivation leads to
something like an infinite normal form while the former yields an unsolvable term even in the
limit. We can take this as the point of departure and try to arrive at a formal characterization
of this diflerence. A promising perspective is that of term-rewriting: the A-Calculus is not
a term-rewriting system technically (c¢f. {11, 31]), but we could try to apply the criteria
developed for infinite rewriting sequences and see precisely where they are wanting. Since

the analysis would involve infinite reductions (and hence, infinite terms), we make these

notious precise (using the formulation of {15}).

Definition 2.1.1 Let £ denote the set of finite sequences over the set of natural numbers R.
We denote the prefiz order on ¥ as <, sequence concatenation by *, and the sub-sequence
relation by C. We shall consider an alphabet consisting of a denumerable set of variables U,
a U-indezed sct of unary operalors A = {Az}zey, and a binary operator -. For any element
7 of this alphabet. we shall denote by ar(t), the arity of T (with variables considered to be of
zemo arity). A A®-term x is defined to be a partial function x : £ — SUAU(:} subject to
the following conditions.

1. @ € dom(\) = V¢ < a.¢ € dom(x)
2. lor any o € dom(x), we dcfine the out-degree of o by
Out(c) = Card({¢p € dom(x)|3Im € R.¢ = o * (m)})
Then we shall have that

a € dom(x) = Oul{a) = ar{(x(0))

"In fact, it is mconmstent (with regard to the theory of A-cquality) to equate such terma to the unsolvable
terms
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We have the usual notion of g-reduction

(Az.M)N — M(N/z)
on the set of terms A This generates a rewrite relation — (we may sometimes abbreviate
this simply as 8) on A* in the usual way, and we call the resulting rewrite system, the A%-

Calculus.
The inclusion of infinite terms in the language sanctions infinite reductions; hence we

have to formalize the notion of the limits of trahsfinite reduction sequences. We shall follow

the methodology of Dershowitz et al. ({15]), and topologize the set A% through a metric 9.

Definition 2.1.2 For a pair of terms 3,1 € X, we define the distance belween them by:
1
(s,t) = m

where d(s, ) is defined as follows,

d(s,t) = min{|o| |¢7 € dom(s)ﬂdom(t),s(v) #1(0)} fors#t
= 0 otheruise
in which | - | denotes the length function for sequences.

It is known that with this metric, the set A® forms a complete ultra-metric space (cf.
[56]). This allows us to define a notion of convergence of a finite or transfinite sequence of

terms.

Definition 2.1.3 For a finile or transfimite sequence of X -terms (s, ). ., indezed by ordinals
7 less than some ordinal K, we say that a term t 1s the limit of the sequence (equivalently,

the sequence converges o t—wriiten as

limn (s) t

R
if, for any neighborhood V of t, there exists an ordinal a < K, such that ¥y : a < y <
K. 8y € V. We have the obvious generalization to sequences indezed by ordinals in some

range between a pair of ordinals a,v, which would be denoted as (s,\)a<,\<7.

As we know, this formulation of convergence in terms of countable sequences is fundamentally
limited?>—and our objective in this scction is precisely to work towards a more abstract
formulation (in terms of filter bases or centered collections; see [16]). We may define the

notion of a derivafton in the A-Calculus, on the basis of this formulation of convergence

({15)).

PY I a0 s s . —
For inatance, it is impossible to define and analyze the topolo

A . Ry of an uncountable set of t 3
spaces, or formulations in analysis (classical integration theory), of topological

within the framework of countable scquences.
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Definition 2.1.4 For the reduction relation B, and an arbitrary ordinal x, we define the

K-iterate (or the K-transitive closure) of B symbolized as —'ﬁ‘ﬁ! as follows:
If k = 0 then the x-iterate — g is simply the identity relation;
If & is a successor ordinal ¢+ + 1 then —S5=—1i5 U(—>p 0 —p);

If x is a limit ordinal then for terms s, t we have s —Spt if s —5p t for some ¢ < K or

there ezists a sequence of terms (s,) such that s, —55 s, forall v < p < Kk and

u<n
limy,.s, =t

A derivation of length k with respect to the reduction relation 8 is sequence of terms (8u)ucn
such that s, %5 s, for all v < p < k. We say that the derivation converges to a term t if

the limit of the sequence of terms constituting the derivation 1s the term t.

We may generalize the notion of derivation to arbitrary (binary) relations R over A® in the
obvious manner.

This gives us the basic framework to reason about infinite derivations and terms. The basic
approach within the tradition of term-rewriting systems is to consider, for arbitrary ordinals
a, derivations of length a which have a limit—and define such derivations as normalizing
or otherwise, if that limit is a normal form, appropriately defined. We have the following
definition in [15)].

Definition 2.1.5 ([15, Definition 4.1]) An a-normal form of a term s in A, for an ordinal
a, and with respect to the reduction relation R, is a term t such that s —Spt andt —p t'

only if t' =1t.

We see of course that this would not do for us: both derivations, for 2 and Y considered
above would turn out to end in normal forms on this criterion. llence, we define a normal

form in a more direct manner as follows.

Definition 2.1.8 A \*-term t is said to be in 3-normal form iff for no sequence o € dom(t),

is the value of (o) a B-redez.

A f-redex is, as usual a (sub-) term of the form (Az.M)N: thus, a term is in normal form
if and only if it has no finitely accessible occurrence of a fB-redex. We may reformulate

Definition 2.1.5 as follows.

Definition 2.1.7 An a-normal form of a term s in A*®, for an ordinal a, and with respect

to the reduction relation B, is a term t in B-normal form, such that s —54 t.
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We shall try to characterize infinite meaningful B-reductions as those which converge (in
the most general topological sense) to normal forms. We shall work within the topology of the

ultra-metric space obtained on the basis of Definition 2.1.2. We need the following auxiliary

~

notions.

Definition 2.1.8 Let AL denole the set of (finite) A-terms augmented with a constant L.
For an A-term N, we may define a corresponding AL-term [N] (its residue) as Jollows
(the notational conventions used are slandard: AZ is used to denote a generic sequence of

A-abstractions, the componants variables of which may be taken to be xy,...,3,);

) AZ. L tf N 1s nol in hnf, and has the form A\s. M
[N =

MEY[M1] -+ [Ma] of N has the hnf AZ.yM, oMy
where “hnf” is an abbreviation for head normal form.

The same notion appears in Barendregt in connection with a discussion on continuity ([5,
Definition 14.3.6 (ii)]). Al-terms may be thought of as denoting sets of A-terms by the

following convention.

Definition 2.1.8 For any term { € A, and a AL-term X, we say that t extends X, (written
ast> X)iff

dom(X) C (lom(l)/\\;’n € dom(X). X(0)# L = t(o) = X(o)

thus, in an intuittve sense, if we undcrstand that the occurrence of L to denote “undefined”,
then t > X sumply means that as functions, t eztends X. We shall use > for the obvious

partial order obtained on this basis. We define the extent [] of a AL-term X as follows.

[X]={tex|t> X}

In the sequel, we would be extending the extension relation to Al-terms, defined in the same
way as above. Note that for AL-terms X and Y, if X > Y, then [X] C [Y].

Now consider a 3-reduction sequence (that is, a derivation) (X) of length a:
(X) = (Xo— Xy — )

We have the sequence of AL-terms (IX.1),<q» and thence the sequence of sets of A®-terms

{UXi1])yca- We can casily verify the following property.

Lemma 2.1.10 For all 0 < i < o, we have that X1 € {1X0).
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Proof: For any term X; in the sequence, we must have that the succeeding term Xy is
obtained by contracting a S-redex in X,. The residue [Xi] would have had a L at the
occurrence of this redex, while [X;4;] would either have a 3-redex at the same node,

or a non-redex. Hence [X,41] > [Xi], and thus [[X,+1]] C [[X.]).

Let us review briefly some notions of convergence from Topology: an excellent reference
is [16, Chapter X §2].

Definition 2.1.11 A collection of subsets of a Topological space is said to be centered if
the intersection of any finite number of them is non-empty. A centered collection of subsets
converges to a point x € X (in a topological space (X, 0)) if for each neighborhood Oy of the
point z, there ezists a member of the collection contained in O,.

It is quite clear that the collection ([[X:]]);, of sets obtained from the 3-reduction sequence

(X') above is a centered collection of sets. We have the following proposition.

Proposition 2.1.12 If the derivation (X) converges (in the sense of Definition 2.1.8) to a
term z € A in -normal form then the centered collection of sets ([[X]]);c, converges to

I.

Proof: Suppose z is finite: then the last term of the derivation (X) must be z (apply
definition of convergence, and note that finite terms are isolated in the topology), and
in that case [z] = z or [[z]] = {z}; hence any neighborhood O, contains {z} and the
proposition is trivially true. Now suppose z is infinite; let the length of the derivation
be a; then, the definition of convergent sequences tells us that for any neighbourhood
O, of z, there exists some ordinal k < a, such that Vy : k < v < a. X, € O;. In
other words, for any depth d € X characterizing Oy, there exists an ordinal k < a, such
that all terms in the derivation after X, agree with z up to depth d. Since z has no
finitely accessible -redexes, this means that for any such neighbourhood, there exists
an ordinal k < a, such that all terms in the derivation after X, have all §-redexes at a
depth greater than the corresponding depth d. In that case Vy : k < 7 < @, the extent

of the residue of X, must be contained in O;. llence the proposition.

We also have the converse.

Proposition 2.1.13 The dervivation (X) (of length «) converges (m the sensc of Defini-
tion 2.1.3) to a term = € A™ in (3-normal form if the centered collection of sets ([[Xi]]),ca

converges to x.
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Proof: By hypothesis, every neighborhood of O, of z contains an element of the centered
collection. Now, for any neighborhood O, we have a depth d such that O, contains
all terms which agree with z up to depth d. Hence, our hypothesis tells us that for
every such neighborhood, and thus every depth d, the class of terms that agree with
z up to this depth contains a set from the centered collection: in particular, we may
say that for every depth d, the class of A L-terms that agree with z up to that depth
include the residue of a term of the derivation. But any residue has the property that

it has no occurrence of a f-redex. Thus we have that at no (finite) depth does z have

a f-redex—which gives us the proposition.

Thus we can see that the notion of the residues of a term allow us to arrive at a completely
general criterion for the meaningfulness of those infinite derivations which end in an (infinite)
normal form (as distinct from those which don’t): moreover, this criterion is seen, on the
basis of the last couple of propositions, to be equivalent to the one formulated in terms of
countable sequences. We have thus some ground to believe that the sets of residues of a term
epitomize, in some way, the contributions (o its net semantic definition. Accordingly, we shall

explore the idea that the class of residucs of a term, which we formally define as
JEEURIREY!

(for a A-term N, and where we use = as the normal transitive-reflexive closure of the j3-
reduction relation) may be used as the Type of a term, in analogy with the Curry-Howard
isomorphism for propositions and the Type of their proofs. In other words we are proposing
formally that the class of residues of a term may be taken to function akin to the class
of proofs within a constructive theory of Types which is constructed on their basis. This
program will be initiated in the next chapter and the denouement shall take up most of
the sequel; in the remaining part of this chapter we make good our conjecture made in
Equation 2.1—namely that if any two terms have the same class of residues, then for every
context, their substitution yields terms with the same head normal form (in some suitable
sense under which head normal forms may be deemed to be the “same”). The basic theory

is worked out in Barendregt ([5, Chapter 10 §4, Chapter 19 §2]), and we offer here, slightly
more direct proofs of the relevant theorems.

2.2 Semantic Equivalence

We start with a fow definitions.
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Definition 2.2.1 A term is said to be in head normal form if it is of the form AZ.yM, --- M,,.
The head segment of a term in this form is AZ.y. Let k be an element of the finite non-

empty sequences over the natural numbers. The k-reduct of M, written as (M |)i is defined
inductively as follows:

M) M; Y k = (i), i < n, and principal hnf of M is AE.yM, --- M,

k= .
(M’ U(i) ifk=k'e(i), and M' = (M | )

where the principal hnf is the last term of the head reduction sequence of M; the k-reduct is

undefined if any of the clauses of the definition is not defined. If k is an element of finite

sequences over the natural numbers, then we define the k-head segment of a term M, wrilten

as (M |)¥, inductively as follows:

(M 1) = { head segment of the principal hnf of M if k = ()
(M )% where M’ = (M )
Definition 2.2.2 The Bohm representation of a term M, written as B(M) is the following
inductively characterized tree: 1f M is not in head normal form then B(M) is simply the
single-node tree L; otherwise, let M have the form A\Z.yM, ---M,: then B(M) is defined to
be the trec given in Figure 2-1.

Az.y

B(M,) B(Mpn)

Figure 2-1: The Bohm representation.

This definition generalizes in the obvious way to the Béhm representation of residues, and
contexts. We state a few simple propositions, some of which would be useful in proving the

main theorem.

Lemma 2.2.3 For terms M and M', such that M — M', we have that B([M]) C B([M"]),
where C is the containment order on trees with L considered as representing an undefined

value.

Proof: This holds trivially if M is not in hnf. Otherwise M is of the form AZ.yM, - -+ My, and
we must have that M’ = AF.yM{ .- M, where M, —— M! for all i in the appropriate
range. Hence the Bohm representations are identical up to depth 0. Now applying the

reasoning inductively to the reductions M, — M/, we have the proposition.
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Remark 2.2.4 We shall usc the crtension order < (cf. Dcfinition 2.1.9) interchangeably

with the containment order C. Il 1s casy to sec that B([M]) < B([M") f and only if

[M] < [M", for terms M and M'.

Lemma 2.2.5 For terms M, My, My such that M —~ My and M ~+ M, we would have

that B([M,]) and B([M;]) are compatible.

Proof: By the Church-Rosser theorem we have that IM3. My — M3\ M; -2, Mgz; By the
Lemma 2.2.3 we have that B([M:]) € B([Ms]) and B([M2]) € B([M3]), and hence

the proposition.

Lemma 2.2.6 The set of residues [ M for any term M is structured as a directed set under

the extension order < for residues.

Proof: Consider any two elements [M;], [Mz] in the set [ M; we have of course that
M =+ M, and M == M,; by the Church-Rosser theorem we have that 3M3. My =
Ms A My = M3, and Lemma 2.2.3 tells us that [M3] > [M] and [M3] > [M2]; and
of course [M3] € [ M and hence the proposition.

Definition 2.2.7 A AL-term is sad to be in partial normal form if it has no occurrence of

a fLl-redez. A L-redez is a sub-term of the form LM, with M € AL.

Lemma 2.2.8 Consider the following posct: [A] = {[M]|M € A}, with the eztension order
< . It has the following properties:

1. every compatible pair x, y € [A] has a least upper bound in [N];
2. every finite directed subset has a least upper bound in [A].

Proof: Since r and y are both AL-terms, and we know that under the extension order, the
poset AL is (finitely) consistently complete, we have that lub of z and y exists in AL.
It is also casy to sce that for z and y in partial normal form, their lub too would be in
partial normal form; also, for any term 2 in partial normal form, there exists a A-term
2’ such that [2'] = z (just replace every occurrence of L in z with 2). Hence the lub of
z and y is in [A]. As for two, we use the fact that AL is directed-complete under the

extension order, and the lub of a finite set of terms in partial normal form is a finite

term in partial normal forin,
Lemma 2.2.9 foraterm M € )\, and k € dom(B([M1)) we have that

BMY)(k) = { (lM 1)* +f (M ) is in head normal form

otherwise
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Proof: By induction on the length of k. The proposition can casily be seen to hold for
|k] = 0 and |k| = 1. Let us suppose it is true for |[k| = n, and consider an appropriate
k = k' e (i) where |k'| = n. Let (M |)p = AZ.yM; --- M,; by induction hypothesis,
B([M1)(K') = (M |)*'; now if M; is not in hnf, then we would have that B([M)(k)=1
(by definition of [M]); otherwise we would have that B([M])(k) = the head segment
of M,; hence the proposition.

Let [A]% denote the directed lub-completion of the poset [A]: that is B®()) is obtained
by formally adjoining to [A], the (possibly infinite) terms corresponding to the least upper
bounds of directed sets of A.L-terms. It can easily be seen that [A]* is a consistently-complete

algebraic cpo.

Definition 2.2.10 For any A-term M, let co(M) denote the lub \/(f M) in [A]*; by
Lemma 2.2.6 we have that [ M is structured as a directed set, and must have an lub in
[A1%.

We 1eproduce without proof, a simple though important proposition from Barendregt.
Lemma 2.2.11 ([5, Lemma 8.3.16]) Let M = AZ.yM, --- My; if M = N then:

N =XfyNy - -Npand M, 5 N, for1<i<n

Corollary 2.2.12 ([5, Corollary 8.3.17]) 1. Let M be in head normal form, and M —

N: then N is in head normal form
2. Let M have the head normal forms
Azy T yNy---Np,  and
Azy ez y' Ny NL
thenn=n',y=y,m=m'and N, =g N] for1 <i<m.

Lemma 2.2.13 For terms My, M, € A, if IN.M; =+ NAM; — N then M, and M;

must have the same ()-hcad segment.

Proof: If cither is already in hnf, then N must also be in hnf and must have the same
head segment as the former; hence the other must have the same head segment too.
Otherwise, if N is in hnf then the proposition follows immediately; otherwise, let N’

be ahnf of N3 then the proposition follows by the previous consideration.

Corollary 2.2.14 Interconvertible terms have the same ()-head scgment.



26 CHAPTER 2. RESIDUES

For A-terms M, N such that M == N, we shall in the sequel, by abuse of notation, write
M — [N]. Thus, for some AL-term P, we would write M — P to mean that for some
Mterm N, M =+ N and P = [N]. We would extend this usage to cover the following:
for P € AL, M € A, we shall write M -4 P, if for some extension N > P, we have that
M- N.

Lemma 2.2.15 Let X € [A\], and X = V{X,|i € I} (for some indezing set 1); then, for
some k € dom(B(X)), we have that B(X)(k) =-s iff Ji € I.B(X.,)(k) = s.

Proof: Immediate, from the properties of trees and their least upper bounds.

In the sequel, we shall take contexts C[-]x to be in their B6hm representation; this implies
that the occurrence k is determined by this representation. We have the following important

proposition.

Lemma 2.2.16 We have the following equivalence: for k € dom(B(oo(M)))
B(oo(M))(k) = M.y & 3C[Je. 3N € A M~ C[N AWV DO = Ay

with the contezt C|-]x in its Bohm representation.

Proof: =: By definition, we have that co(M) = V{[M')|M — M'}; by the previous
Lemma, there must exist some M’, such that M - M’ and B([M'])(k) =
AZ.y; which means that the Bohm representation of M’ must be of the form
CIAF. YNy -+ Ny i for some context Cl-Jx (in its Bohm representation). ©
< Suppose M —Zs C[N]i for some vontext C[-]x in its Bohin representation; without
loss of generality, we may assume that N is in the head normal form, and of the
form AF.yN, -+ N,,; then we would have an element in J M with the k-th node of

its Bohm representation labeled by AZ.y; hence, by Lemma 2.2.15, the proposition.

Lemma 2.2.17 Supposc there ezists contezt C[-|x (in the Béhm representation), such that
Jor some N € A, M = C[N|; then, for any other contezt C'[-)x (in the Béhm representation)
and N' € A such that M = C'[N']x, we must have that N =g N'.

Proof: We can sce that C[N] is the B6hm representation of some term P; and all redexes
of P occur in sub-trees that do not overlap with k; similarly there would be some term
Q such that C'[N], is its Bohm representation, and all redexes of Q occur in sub-trees

that do notoverlap with k. Thus A =2 P and A1 =24 @; then by the Chureh- Rosser

Theorem, and using the fact that sub-trees are not affected by reductions in other

sub-trees, the proposition follows,
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Corollary 2.2.18 Suppose

3C[}k-3N € AN = AZ.yN,---N,,  and
3C'[k.IN' € X N' = AZ.wN}---N!, and
M SCINJkAM = C'[N'lx
then we must have that & = Z,w = y,m = m' and for 1 < i < m we have N, =g N; the

contexts C, C' are assumed to be in the BGhm representation.
Proof: By the same reasoning as above, and Corollary 2.2.12.

We have the main theorem.

Theorem 2.2.19 For any M € X and k € dom(co(M)) we have:

B(oo(M))(k) = (M L)k

Proof: We proceed by induction on the length of k.

Case |k| = 0: thus & = (); if M is unsolvable then the proposition holds trivially;
now all N in hnf such that M — N must have the same head segment (cf.
Corollary 2.2.14)—say AZ.y; then we have B(oo(M))({)) = Azf.y = (M 1)()

Case |k| = 1: let k = (i) for some i; consider any hnf of M—say AZ.yM, --- M,,: any
other hnf would be of the form AZ.yM|---M.; with M, =g M/ for all appro-
priate #; in particular, for any of the head normal forms Az.yM, --- M, any M,
would have the same ()-head segment (across the head normal forms of M) (by

Corollary 2.2.14). Hence the proposition holds in this case.

Hypothesis: Assume the proposition true for all (appropriate) sequences k with
|| < n.

Case |k| = n + 1: Suppose k = k' (i): by hypothesis B(co(M))(k') = (M |)¥'; by the
Lemma 2.2.16 we would have a context C[]xs (in the Bohm representation) and
some term N in head normal form (N = AZ.yN; -+ Ny,) such that M — C[N]w
(and thus B(oo(M))(K') = (M ¥ = AZ.y; if such an N in hnf did not exist,
we would have had B(oo(M))(k') = L); also, for any other context C’[Jx+ (in the
Bohm representation) and term N’ in hnf such that M — C'[N')x+, we would have
by Corollary 2.2.18 that N’ is of the form AZ.yN{--- Nj, with N, =g N; for all
appropriate 3. Hence for all such j, we would have that Ny and NJ have the same
()-head segment (by Corollary 2.2.14), and hence, in particular, B(oo(M))(k) =
(M )k
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Now recall the definition of the Bohm tree of a term, which we reproduce below.

Definition 2.2.20 (cf. [5, Definition 10.1.4]) The B6hm tree of a term M, written BT (M)

is a single node labeled by L if M is unsolpable; otherwise, if the principal head normal form
of M is AZ.yM, --- My, 1t it is the inductively defined tree shown in Figure 2-2.

M.y

BT (M) o BT(M,)

Figure 2-2: The Bohm Tree.

From this definition and the relevant results above, we have the following proposition and its

corollary.

Proposition 2.2.21 For k € dom(BT(M)), we have that BT(M)(k) = (M ])k.

Proof: Immediate.

Corollary 2.2.22 If two terms M and N are such that {M = [ N, then BT(M) = BT(N).
Proof: Immediate, from Theorem 2.2.19.

Hence, the set [ N for any term N —which we shall henceforth call the A-Type of N—has
all the information from which the Bohm tree may be constructed: and in fact it has more.
What we call the A-Type and symbolize as [ N (for any term N), goes in Barendregt under
the symbol C'(N) (cf. [5, Definition 14.3.6 (iii)]); we have the following proposition (from
Barendregt) which indicates how this set governs the semantic behavior of the corresponding

term in arbitrary contexts.

Theorem 2.2.23 ([5, Corollary 14.3.20]) For an arbitrary context D[], and a term M, we

have that

BT(D[M]) = \/{BT(Dz))|z € C'(M)}
Hence, we have the easy corollary:

Corollary 2.2.24 For terms M and N, of [N = [ M then Jor any contezt C[-] we shall
have that BT (C|M]) = BT (C[N)).
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Hence referring back to Equation 2.1, and the considerations we started with, we can claim
that the A-Types epitomize all the salient semantic information for the corresponding terms,
and we may consider further the possibility of constructing a system of (Curry-Howard)
Types on their basis. This is the subject of the next chapter, where we structure the A-Types

into a system admitting an interpretation of a theory of Dependent Types.



Chapter 3

The Theory of Dependent Types

This chapter is structured as follows: in the first section we have a brief description of an
Intuitionistic Theory of Types: this is essentially Martin-Ldf’s Type theory (without equality
judgements), or in other words, the dependent first-order fragment of Hyland-Pitts’ presen-
tation of the Theory of Constructions. We present the syntax of the Types and terms, and
the rules for the inference for judgements; we also discuss the various issues in its interpre-
tation, and present a categorical model for it. In the next section, we structure the A-Types
of the previous chapter into a relatively cartesian closed category—which is a general frame-
work for the interpretation of a theory of dependent Types. In this, we conceptualize the
residues as (representing) equivalence classes for a certain equivalence relation (on the set of
A-terms). Thus, in general, a A-Type is structured as a collection of equivalence classcs—and
can be thought of as a partial equivalence relation on the set of A-terms. The precise motiva-
tion behind this formulation would become clear in the later chapters, when the category of
Types would be structured as an internal category within a standard categorical model for

polymorphic calculi.

3.1 Intuitionistic Type Theory and its Interpretation

ln this section we provide an overview of a theory of dependent Types—the term syntax and

the stracture of judgements  and the significant aspects of its categorical interpretation.

3.1.1 A Theory of Dependent Types

s the preliminary step in the ¢ ‘i ; . constrneli )

A preliminary step in the construction of a full theory of constructive Types, we shall

extract the fragment on dependent Types from Martin-Léfs Intuitionistic ‘T'ype Theory ([53
o a4 )

50, 51]), but not including equality Types. The relevant fragment is taken from the fine study
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of Hyland and Pitts on the Theory of Constructions ([38]). The theory consists of judg ts
J made in contezts I' and symbolized as:

J[r)

The judgements we shall be concerned with in this chapter have the forms:

A

s € A
A =B

s = t€A

The first expresses that A is Type; the second, that the term s is a term of the Type A; the
third, that A and B are equal Types; and the fourth, that s and t are equal terms of the
Type A.

We shall use upper-case letters (or greek letters) for Types, and lower-case letters for
terms; variables would be denoted generically by the letters z,y,z,w. Contexts are sets
of variable declarations, partially ordered by the pre-supposition relation, which we explain
below. Judgements are always made in contexts, which declare the Types of all the free

variables occurring in it. Variable declarations have the form:
z€P

which can be seen to be a particular kind of judgement. A variable declaration is said to
presuppose another if the former has an occurrence of a free variable, which the latter declares.
For any variable declaration J, we shall denote the variable declared, generically, as £;, and

its Type as P;. More formally, we define a context as follows.
Definition 3.1.1 A context I' = (I', <) is a poset of variable declarations satisfying:

1. The clements of ' are variable declarations and distinct variables have distinct decla-

rations.
2. If J €T then J [I'|,) is a judgement of the theory, where T'|; = {J'|J' < J}.

We shall write [J,17] to denote the context with J as its maximal clement, and given two
disjoint contexts T, I, we write [I',1Y] for the context formed by their union ordered such
that everything in 1" is greater than anything in T; finally if J ¢ I, then [J > I'] denotes the

context formed by adding J to I' as the maximal eleinent.
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Type theory would be familiar from a study of Martin-L6f systems.
transitivity and symmetry for the equality relation, we
so have a general principal

The general rules of the
Other than the rules of reflexivity,
have the derivational rules as in Table 3.1. Along with them, we al

of substitution, which is as follows.

Definition 3.1.2 Aninterpretation of a contezt T in another contezt A consists of a function

p assigning to each judgement J in I', a term py such that for each J in T,
Py € Pilpar/r)J' < 1) (B]

15 also a judgement of the theory; then the general principle of substitution is, that whenever

J I is a judgement of the theory, and p is an interpretation of T in A, then
J(pa/€s|J" € 1) (8]
is also a judgement of the theory.

The rules in Table 3.1 are labelled according to the following conventions: a typical label
is of the forms X-Y-N or X-N, where X is a symbol from the set {1,%,11, C, E, §, A, W}
and interpreted respectively as Unit, Sum, Product, Constant, Equality, Substitution, As-
sumption and Weakening; Y shall be from the set {F, I, E, =} and interpreted respectively
as Formation, Introduction, Elimination and Equality; the number N would be optional and
label multiple versions of a clause.

As we can see from Table 3.1, we have eliminated equality types: these constrain the
class of models, and particularly, the model we shall be considering does not support them.
Following Hyland-Pitt’s adaptation, we have used constants fst and snd for projection rather
than elimination constants. This can be done as long as we consider a single “level” of
Types: adding a second level of Orders, and requiring rather strong closure conditions on the
quantification of Types over Orders lcads to paradoxical situations, and we must use rules
given in terms of elimination constants rather than projection constants (cf. [38, §1.9]). The
% rules are the ones for existential quantification and are known as the “Sum” rules; the 11
rules are for universal quantification and are known as “Product” rules. The rule Constant
Introduction allows the introduction of (non-logical) constants into the theory. This theory

can be shown to be the theory of the proofs of (intuitionistic) first-order logic ([48]).

3.1.2 The Categorical Interpretation

Historically, the categorical interpretation of Type theory, takes its cue from the work of

Lawvere who used indexed categories, with some additional strueture (these are known as



S-1

S-2

S€EA A=B s=1t€A A=B
sen s=teD
pEP[T] qeQ[MzeP>T] p=pcP[l] q=¢cQ",zeP>T)

a(p/z) € Q(p/2) [I'(p/z) > T)

9(p/z) = ¢'(¢'[z) € Q(p/z) [['(p/z) > T]

peP[l] Q[IM,zeP>T p=p€eP[ll] Q=@ [I",ze P>T]
Q(p/z) [M(p/z) > T} Q(p/z) = Q'(p'/2) [I'(p/z) > T]
AlT)

z€Alze A>T]
Ar] J[I'>T)
J[Ize A>T

1r

x€lr
telr
t=xelr
Bz € AT)
Yz e ABI]
s€A L€ B(s/z)
(s,t) € Er € A.B
u€ Xz € AD
fst(u) e A
ve Xz e AD
snd(u) € B(fst(u)/z)
sEA te B(s/z)
fst((s,t))=s€ A
v€ Xz € AD
(fst(u),snd(n)) = u€ Xz € AD
BlzeAl
Nz € A.B I
teBlz e Al
Az € Atellz e A.BT)
uellz€e AB s€A
us € B(s/z)
s€ A[l] teBlze AT

A= AT

A=Al B=B[ze AT
Lr€ AB=3Xz € A'.B'[I)
s=s€A tfi'ierB(i/i)

(s,t)=(d,t') €Tz € AB
u=u' €Lz € A.B
Tst(u) = fst(w) € A
u=uw €Tz € AB
snd(u) = snd(u') € B(fst(u)/z)
s€A te B(s/z)
snd((s,t)) =t € B(s/x)

A=Al] B=DB[ze ATl
Nz € A.B=Tze A'.B[I)
t=t'€ Bize€ AT)

MeAt=)ze At ellze A.B[I

u=uwecllrecAB s=s5€A

(Mz € At)s = t(s/x) € B(s/z)[T)
ALl
f(z1,+-,z0) € A[N]

us = u's’ € B(s/z)
vellz € A.B
Mr.our =u€llz € A.B

Table 3.1: The System of Dependent Types
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Hyperdoctrines) to interpret first-order logic ([47, 76]). The fundamental insight that the

syntactic properties of quantification are such as to make it possible to represent them as

e that runs through almost every kind of subsequent
6, 78]). Martin-Lof’s theory of intuitionistic Types

adjoints to substitution, is a basic them
categorical interpretation ¥f logic ([46, 7
added a nuance to this: predicates on a Type were also Types (dependent on the former),
and hence objects of the base category; proofs, which had previously been relegated to the
fibers (as morphisms) in models of classical logic, returned as first-class citizens of the base
category—-as terms of the base Types; the models of this kind of Type theory was a compact
object known as a locally cartesian closed calegory—essentially a cartesian closed category
with cartesian closed slices. These were shown to be models of Martin-Lof Type theory with
equality Types ([77]). Certain other considerations—such as the need to have full recursion
in these models, and hence fix-points—led to their generalization: essentially, the existence
of equalizers in cartesian closed categories does not go well with the requirements of fix-
points. The removal of fix-points necessitates the designation of a class of morphisms in the
category as representing ‘Type dependency. Such morphisins were called display maps by
Taylor, in his pioneering work on such systems ([85]), and the resulting categorical structures
were axiomatically studied by Hyland and Pitts under the name of relatively cartesian closed
categories ([38]).

As the title of this chapter indicates, we shall use the framework of Hyland and Pitts to
assimilate our theory of A-types (and other sets of residues). In the rest of this section we shall
bricfly indicate the main features of these structures and how they allow the modelization of
the Type theory given in Table 3.1. In categorical model theory, we usually work on the basis
of an equivalence between the category of theories and that of models ([38, pages 162-164]).
This allows a theory to be generated from any object in the category of models, and hence,
our strategy will be to structure our objects as a category in the category of models. We shall
make no pretense of heing rigorous in this section: its purpose is merely to give a description
of the various features of the model in light of the syntax of the theory it interprets, and not
to demonstrate the fact that it 1s a model.

The paradigm for the interpretation (in a certain category C) is, that the set of Types
dependent on a particular Type A, is a (designated) full sub-category of the slice over A. The
objects in this slice are morphisms with co-domain A and belonging to a class of morphisms
called display morphisms; we have called them F-morphisms in our work. This class of
F-morphisms need certain closure properties—which make it a kind of generalized full sub-

category of C (in a fibered sense; of. [R2]). For any object A, the full sub-category of the

slice C/A consisting of I'-morphisins, would be denoted as F(A). A judgement of the form
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B [z € A] would be interpreted by a F-morphism || ]| — IIAll (with the co-domain [|A]| being
the interpretation of the Type A): this would be an object of F (A) (we shall confuse the name
of a Type with the symbol for its interpretation); in general a judgement of the form B [I']
would be interpreted as an object of F(||T||), where ||T||) = I1;||Ay||—the cartesian product
of the interpretations of the mazimal Types in the context I'. A judgement of the form
y € B [I'] would be interpreted as a morphism ||T)) — ||B]| that is a section (a right-inverse)
for the F-morphism ||3|| — ||| that interprets the judgement B [T]. Equality judgements are
interpreted by the equality of the corresponding interpretation morphisms in the category.

We can see that this kind of interpretation would need the category to have finite products.
We would model the substitution rule by pulling back (along the morphism that interprets the
judgement p € P [I']). Morcover, the Weakening rule could also be seen to be interpretable
by pulling back (along the F-morphism that interprets the judgement A [[]). Hence we
must have that our sub-category of F-morphisms be closed under pull-backs over arbitrary
morphisms in C.

The unit clauses imply that the interpretation of 17 is an object isomorphic to the terminal
object of C. Moreover, since any isomorphism in C could be thought of as resulting from
pulling back this isomorphism (which is a F-morphism) along some morphism, we would
have that the class of F-morphisms must contain all isomorphisms in C. For certain model-
theoretic reasons, we would use a slightly stronger principle—namely, that for any object of
C, the unique map from it to the terminal object, is a F-morphism. This condition ensures an
equivalence between the category of Martin-Lof Type theories and the category of relatively
cartesian closed categories, and it obtains in our category of Types.

It is well known that the rules for Sums allow it to be interpreted as a left adjoint to the
pullback functor ¢* : F(A) — F(B) for any F-morphism ¥ : B — A ([47, 76, 77]). This
can be easily verified using the general principle of substitution. The specific form of these
rules in terms of projection constants, entails that the co-unit of this adjunction is actually
part of an isomorphism (the other part is the morphism interpreting the constant snd). This
is taken care of by using the fact that (left) composition with a map yields a left-adjoint to
pulling back along it. Hence we would require that our class of F-morphisms be closed under
composition.

Finally, it is also known that the rules for Products allow it to be interpreted as a right
adjoint to the pullback functor ¥* : F(A) — F(B) for any F-morphism ¢ : B — A ([ibid.]).
Hence we would require that every such pull-back functor have a right adjoint, which we shall
denote as 4. Morcover there is a technical requirement that the model satisfics the criterion

(known as the Beck-Chevalley condition) that “quantification commute with substitution.”
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This holds automatically for the interpretation of Sums, gince in this case the left-adjunction

was given by composition. In the case of products we have to impose this explicitly.

Definition 3.1.3 (The Beck-Chevalley condition) Let us have a pullback in C, of a F-

morphism [ along a morphism g, and let the pullback cone have morphisms h and k (whose

co-domain is the domain of g), with k (necessarily) in F. Given this contezt, the canonical
natural transformation:

kyoh* 5 g*o fy
is an 1somorphism.

We may summarize all these requirements in the following definition.

Definition 3.1.4 A Category C 1s said to be a relatively cartesian closed category, if it

satisfics the following conditions:
1. It has finste products.

2. It has a designated class of morphisms, denoted by the symbol F, which satisfies the

property that the class is closed under pullbacks along arbitrary morphisms in C.
8. For any object, the unique morphism from it to the terminal object is in the class F.
4. The class F 1s closcd under compositzon.

5. For any morphism [ : B — A in the class F, there 1s a right-adjoint f4 to the pullback
Junctor [*: F(A) — F(13) where F(X) denotes, for any object X, the full sub-category
of the slice category over X, whose objects are in the class F. This right-adjoint satisfies

the Beck-Chevalley condition,

This is the kind of category that we shall prove our category of A-types to be. In categorical
model theory, we usually understand theories to be categories themselves, and hence in
particular, a model for itself. Under the conditions of Definition 3.1.4, we can prove a (bi- )
categorical equivalence between the category of Martin-Léf Type theories (without equality
Types), and the category of relatively cartesian closed categories. Under this equivalence,
every such category, yields a certain theory, whose judgements are exactly those satisfied
in the category ([38, pages 162 164]). llence, to show that the sets of residues interpret

a certain Martin-Lof Type theory, it is cnough to prove that the category constructed is

refatively cattesian dosed  We note the cqnivalence without proof
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Theorem 3.1.5 ([38, Corollary, page 164]) There s a categorical cquivalence between the
category of Martin-Lof Type theories (with interpretations of one theory in another as mor-
phisms) and the category of Relatively Cartesian Closed Categories (with morphisms, functors
that preserve finite products, the class F of morphisms, pullbacks of morphisms in F along
arbitrary morphisms, and right adjoints to pullback functors along morphisms in F).

3.2 A Relatively Cartesian Closed Category of \-Types

In this section we show that the class of A-Types of the last chapter may be (inductively)
structured into a relatively cartesian closed category (under the rules of dependency and
quantification). The critical construction involved in this is to conceive a residue as repre-
senting an equivalence class for a certain equivalence relation over the set of A-terms. Thus,
a A-Type can be thought of as representing a certain partial equivalence relation over ), the
significance of which shall become clearer in the later chapters. The formulation shall take
a syntactic form—that is, every Type would have a name within a certain term syntax, and
interestingly, under this representation, the dependency structure of our Types would be seen
to be engendered by syntactic sub-term relationships—which is quite natural, perhaps, to the
intuition.

Let us define first the equivalence relation that we shall use throughout the construction.
This is the familiar relation between terms used in the theory of solvability—and according
to which, terms arc in this relation if their Bohm trees are can be “made compatible” through
(possibly infinite) 7-expansions. We shall explicate this relation this relation precisely in a

later chapter: for now, the following statement would suffice.

Definition 3.2.1 The binary relation ~ on the sel of A-terms is characterized by the follow-
ing statement:

z ~ y & VC[). (C[z] is solvable & Cly] is solvable)
where C[] is an arbilrary A-contezt.

Note that this is not to be taken as a definition, but as a characterization equivalent to it;
this serves our purpose for the present. We can easily see that ~ is a congruence—a fact that
we shall use heavily in onr formulations in the sequel.

The class of Types which we shall structure into a category, is given on the basis of a

certain syntax defined as follows.

Definition 3.2.2 Lel us have a distinguished set of variables U, and let us denote by A, the

set of terms of the A-Calenlus, generated on this set of variables. The set A is the smallest
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sel of ezpressions satisfying the following rules:
1. ACA.
2 Tz:af €A, forn,fEA.
S Nz:afBeEA, fora,BEA.

We have, in this language, binding operators Lz : a and Ilz : o, in addition to the standard

one Az. The rules for bound and free variables are given as follows.

Definition 3.2.3 The variable ¢ occurring in a A-term M is said to be bound under the
Jollowing inductive rules.

1. If M is in the pure A-fragment, then z is bound if it occurs in the scope of an operator
Az (cf. [30, Defintron 1.10]).

2. z is bound in the scope of the operator Lz : a (cquivalently, 1z : a) if it occurs in a
(sub-) term of the form Tz : a.fB (respectively, Iz : a.f), and is free (i.e not bound) in

the sub-term 3.

We shall denote by Aq the class of closed A-terms—that is, terms containing no occurrence of
a free variable—according to the conditions defining bound variables just stated. In addition
to the syntax presented above, we shall sometimes emphasize application by enclosing the
applicand in parenthesis: this shall be the rule when we represent A-definable functions as
combinators—for instance as the pairing combinator (-, -), projection combinators 7o and =y,
and combinations of these with other arbitrary A-definable functions. We would also embed
combinator expressions in the terms, whenever there is no risk of ambiguity.

We define, on the basis of the equivalence relation 2, an equivalence relation—which we
shall denote as ~ too—on the class of A-terms: ~ on the latter class is nothing but the

congruence generated by ~; we state this formally.

Definition 3.2.4 For arbitrary A-tcrms A, a, we definc by A(a/z) the result of substituting
the free occurrences of x in A, by a. The equivalence relation ~ on the class of A-terms is

defined to smallest relation satisfying the Jollowing set of inductive rules:
1. =~ on the sub-class A C A is the relation ~ as defined in Definition 3.2.1;

2. for A-terms A, B, we have that A ~ B iff there ezxist a A-term C with variables
Zyy.. .y &y frve, such that A = Clar/zy,.. anfzy) and B = C(by/zy,...,bu/xp), for
A-terms ay,...,a, and by,... b, with a,>b, for 1 <i<n.
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We shall denote the ~ eqnivalence class of & A term r an [}~ omitting the snbseript ~ when
there is no possibility of confusion with any other equivalence relation.
For each ~-equivalence of A-terms, say [z], we shall construct a Type and denote it as

$[z]: the clements of this Type would be ~-equivalence classes of A-terms. We define the

notion as follows.

Definition 1.2.5 For any AL-term b, we denote by [b] the ~-equivalence class of (/L)
where 2 is the standard unsolvable A-term (Az.zz)(Az.zz). The (partial) operator § on the

class of ~-cquivalence classes of A-lerms is defined as follows:

f[x] = {[b]le/(y) for some y ~ z}, for z € A (1.1)
flE:ap) = {anlllde flal, e flae/N) (12)
Fliz ) = (N1l flo) = Ual € fipta/a) (13)

With these notions precise, we can define our category of Types, for which we shall use the
symbol . Prior to that we need to understand the rather special way in which morphisms

would be defined in our category.

Definition 1.2.6 For the sets X = §[z] and Y = §[y] with 2,y € Ao, we shall say that
a set-theoretic map F : X — Y is tracked by a A-term f, if for all [a] € X we have that
F([a]) = [fa].

This notion can be scen to be well-defined since the relation =~ is a congruence. As we can
sce, there would, in general, be many A-terms tracking the same set-theoretic map. The
morphisms in our category would essentjally be maps which are tracked by A-terms. We have

the following definition.

Definition 1.2.7 The catcgory S has the following constitution:
Objects: Objects are sels of the form $la] for a € Ao;
Morphisms: Morphisms are of two types:

F-morphisms: F-morphisms are set-thcoretsc maps tracked by some A-term, and iso-
morphic to a map of the form m : §{Zz : a.f] — §le] : [(a,b)] — [a] tracked by
the A-term (corvesponding to the combinator) my;

s-morphisms: s-morphisms may be defined on the basis of the follownng clauses:

. The wdentaty map on any obyeet, tracked by the A-term Arax =1, is a s-

morphtsm;
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2. An s-morphisms F : §[¥z: a.p) - §[Zy: ~.6] is @ map tracked by some A-
term f, and such that for some s-morphism G : §la] — §[7] the diagram

shown in Figure 3-1 commutes.

) (=2 : a.f] F §[Zy :7.0]

To To

$c] G (7]

Figure 3-1: s-morphisms.

We shall claim that this category is 1olatively cartesian closed. To verify this we would

go through the list of defining properties of such a category.

Proposition 3.2.8 The category S has a terminal object, and finite products.

Proof: It can be easily seen that the object 1 = §[§2], where Q2 is, as usual, the standard
unsolvable term, is the terminal object (up to isomorphism). Every object X has an
unique map 1x to 1, tracked by the term Ay.Q}; morcover 1y is a F-morphism: it is
isomorphic to the map 7y : $[X2:1.X] — 1. Any other object, containing a single

~-equivalence class is isomorphic to 1, and may be thought of as a terminal object too.

As for finite products, it can easily be verified that the (cartesian) product of the objects

$[X] and §[V] is the object §[Sz: X.Y] = §[Sy: Y. X]. To see this, note that

e X¥]= fa bl € fixs, e fiv)

and hence the proposition.

We may note at this point that since a F-morphism is always isomorphic to map mp :

$[Xx: B} — §lo], we may assume it to have this general form for most purposes. We

use this convention in the succeeding proofs. We would also abuse language and say “the

F-morphism ¢ : X7 : a.3” when we actually mean the first projection.

Proposition 3.2.9 The cluss of F-morphisms is closed under romposition.
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Proof: We consider the following configuration: a F-morphism F : §[Ez : 6.9] — §[6], where
6 = Zy:a.B, and a F-morphism G : §[Zy:a.8] — §[a). Of course, both F and G
are tracked by the A-term my. We claim that the composition G o F is isomorphic to
the morphism 7o : §[Zy: a.L2' : f.y((y,2')/z)] — §la]. To see this, let us verify the
isomorphism §[Ez: (Sy:a.8).9) ¥ §[y: a.Sz': B.4((y,2')/z)]. Consider a typical

element of the left hand side term in the isomorphism; from the Equation 3.2 it can be
seen to be [((a,b),c)], with

€ fhraby/z) (34)
B € flBa/n)] (3.5)
) € flol (3.6)
On the other hand, a typical element of the right hand side may be scen to be [(d, (e, f))],

with

/] € fh((y,m')/z)(d/y)(e/z')l that is

] € f[y((d,e)/z)] simplifying (3.7
le] € f[ﬂ(d/y)] (3.8)
4 € f[al (3.9)

comparing Equations 3.4-3.6 with Equations 3.7-3.9, we can see that the part of the
isomorphism from lhs — rhs is tracked by the A-term (using pairing and projection
combinators) (xp o mp,(my 0 mp, ™)), while the other part is tracked by the A-term

({79, ™y 0 M), my o my). Hence the proposition.

Proposition 3.2.10 The class of F-morphisms is closed under pull-backs along itself, and

along the class of s-morphisins.

Proof: Consider F-morphisms ¢ : §[Sz : 0.8] = §la] and ¥ : §[Zy: a.7] — §[a]; we claim
that the pullback of ¢ along ¢ is given by the F-morphism

v(9): 1z 5y amplmo(z)/2)) = flBy: )
To see this, note that a typical element of the domain is [{(a,b),c)] with
@] € flEv:an]
[ € FlAo()/2)((m B)/2), or simplifying
[l € platasa
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Hence the domain is essentially the sct-theoretic pull-back (over the equivalence classes
of the relation ~) and the maps making up the pullback cone are given by *(¢) tracked
by the term 7o, and the map ¢’ : §[Zz:(Zy: a.).B(ro(2)/2)] — §[Zz : a.f] tracked
by the term (7o o ro,“n). '

As for pullbacks along s-morphism, consider again the F-morphism ¢ and an s-morphism
U : §lv] — §la] tracked by the term u; the same considerations as in the para-
graph above tell us that the pullback of ¢ along U is given by the morphism U*(¢) :
$[Ey : v.B(u(y)/x)]. The maps making up the pullback cone are, as in the previous
case, U*(¢) tracked by the term mo and the map U’ : $IZy : 7.8(u(y)/2)) = §[Ez : .f)

tracked by the term (u o mo, ™).

As we have seen in the last section, closure of the class of F-morphisms under pullbacks
allows us to think of any morphism ¢ : X — Y as giving rise to a pullback functor ¢* :
F(Y) = F(X) where F(X) denotes the full subcategory of the slice category 3/X consisting
of F-morphisms. The action of this functor on objects is as stated in Proposition 3.2.10; its
action on morphisms is quite easy to see: it is exactly as we would expect for the corresponding

set-theoretic case, and we express it as follows.

Definition 3.2.11 For an object §[c], and any morphism F : §[Zz:a.f] — §[Zz: a.q],
tracked by a term f, and an arbitrary morphism U : §[6] — §[a], tracked by the term u, the

action of U* on I is the morphism

U f18z 5 08 /) ~ PIz: 8a(u() /2] : (e, )] o [(d, (m2 0 f)(ud, b))
tracked by the term (7o, (my o f) o (uo m, ™)), using standard combinator notation.
The significant point is that for U in the class of F-morphisms, this functor has a right adjoint.

Proposition 3.2.12 For a F-morphism ¢ : §[Sz : a.3] — §[e], the pullback functor p* has
a right adjoint 11,,.

Proof: The proof goes pretty much as for a sub-category in Sets. Assume that ¥ is tracked
by the term s. Consider a F-morphism ¢ : §[Zy : (Zz : a.f).7] - §[Lz : a.B]; we claim
that the right adjoint 11, has the following action on ¢.

Ny(8) = mo: FS7: adly’: By((z,0')/y)) — flel

To verify this, consider a I morphism D : ${¥7 : b] — $[cr], and a map

U :}{[xy [ (B2 : a).z(s()/6)] — f[zy Sz : )]
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tracked by the term u; the domain of U is, of course, the domain of ¥*(D). We shall
claim that there exists an unique map

U*: f[Ez taub] — f[Er tadly' : By((z,y')/y))
such that
U=ecoyp™(U%) (3.10)
where ¢ is a certain map specified later on:
¢: fIBy: (B2 @By < Bx((a, ) u)(s(w)/2)) — ISy : (B2 : )]

The domain of € is the domain of the pullback of 11,(¢) along . We note that a typical
element of §[Ez : a.lly’ : B4((z,¥")/y)] is [(a, f)] where

) € flol

1 € fUmy (e, v)/u)a/=) —that is,

11 € PUIy: fle/a)ate, ) v)e/o) (3.11)
a1 € $laa/a)) = Lot € Plr((av)/w)(a/2)6/¥))

{lol 1t € f18(a/2)) = lgt) € flr((a,b)/w)]) on simplifying  (3.12)

I

Now consider a typical element [{(a,d)] € §[Ez : a.6}; let a typical element of §[3(a/z)],

for some [a] € f[a], be denoted as [b]; we have a map

d: fl6(a/2)] — fIEy: (Bz s a.)a(stu) )]

tracked by a term An.({a,n),d) which has the following action: [b] — [((a,b),d)] for
general {a], [b] and [d] under the assumptions already stated. Now consider a map
obtained as 7y o (U o d) : §[B(a/z)] = §[7((a,b)/y)] tracked by a term

g = dm.m(u((An.((a,n),d))m)) (3.13)

this has the property that [b] € §[A(a/z)] = [gb] € §[v({a,)/y)], and hence from
Equation 3.12 we may say that [g] € §[Ily’ : B(a/z).2({,y')/y)(a/z)). Hence we have

a map

us f[.‘,}.r tonf) — f[!}r sy’ Ba((z,y)/y))
(g, d)] — [Dmy(u((An.((a,n),d))m))]
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tracked by a term whose form is easy to make out (we shall not Jabour it). Moreover,

d from U, we can also see that it is unique for

ation 3.10. First note that

from the way that this map has beew define
a given U. Now we verify the commutation claimed in Equ

¢ is the evaluation :nap tracked by the term (%o,ap(%1,m1 © 70))
e ap(-,-) is the application combinator:

using the notation for
pairing and projection combinators, and wher
hence ¢ : [({a,b),9)] — [((a,b),gb)}. Now consider a typical element {((a,b),d)] €
§(Zy : (T2 : a.B).z(s(y)/8)]: the action of ¢*(U) on this is (from Definition 3.2.11)
((a,b),g) (where g is as defined in Equation 3.13). The action of ¢ on this is [((a, b), gb}};
as we have seen above gb = my(u({(a,b),d))) and hence the action of the composite may

be written as
cop*(U°) : [((a,b), )] = [((a, 8}, ma(u(((a, B} D))
and we can sce immediately that
[((a,b), m (w(({a,b), )} = [u({{a,b),d})]
and hence the proposition.

Tlhe final point that we have to verify is whether the right adjoint operation detailed above
satisfies the Beck-Chevalley condition. An account of this condition has already been given
in the last section; in the present context, our task gains simplicity since the corresponding

objects are presented on the basis of a syntax.

Proposition 3.2.13 Gven a pullback square 1n S shown in Figure $-2, the canonical natural

transformation U* o llgy — llg o U™ 15 an 1somorphism.

Proof: We have the sitnation shown m Figure 3-2 (where the pullback square is marked
with a right-angle at its top left corner) in which we have omitted the §[] decoration
on the Ag-terms: this is to be taken as implicit. In the proof below, in order to keep
the notation simple, we adopt the convention of underlining Ag-terms to indicate the

§['] operation: that is, X = §[.X] for all X € Ag. We assume that U is tracked by the

term u. Referring to the figure, the action of {1z on P has the domain
Sy:odlz: R.S((y,2)/2)

allowing a clash between in substituted variables, since the meaning is obvious. The

action of {/* on this has the domain

Yr: gz : .Sy, 2)/2))(u(z)/y)
= Dr:éllz: Ru{r}/y).S((u(z),2)/2) (3.14)
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Bz: (Zy: ¢.R).S

=P

Lz :¢.R(u(z)ly) U’ Sy:o.R

El

¢ U

Figure 3-2: The Beck-Chevalley Condition.

upon simplifying the substitutions. On the other hand, the action of U'™ on P has the

domain

Sa: (Sr : ¢.R(u(z)/)-S(((u 0 To)(a),m1(a)}/2)

The action of Il on this object can be seen to be

vz : ¢lla: R(u(z)/y)-S({(no 7ru)(a),m(a))/z)((z,a)/a)
- Sz:¢lla: R(u(z)/y)-S(u(z).a)/2) (3.15)

upon simplifying the substitutions. Comparing Equation 3.14 and Equation 3.15, the

proposition follows easily.

Hence the Beck-Chevalley condition is satisfied, and that completes the circuit of verifications:

we have the final theorem.

Theorem 3.2.14 The calcgory S is relatively cartesian closed.
Proof: Immediate from Theorem 3.1.5 and Propositions 3.2.8-3.2.13.

This validates our claim that we may induce a theory of dependent Types on the basis

of a suitable conception of a proof-object for A-terms. 1t is this conception of a proof-object

that we shall retain in the sequel. We should note that in making this choice, we commit

oursclves to the view that semantically equivalent terms (in other words, those related by =)
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have identical Types (and hence, we compute Types for terms modulo this equivalence)—a
position that may be thought to he rather too strong, especially in view of ()llt- remarks in
the introduction that intensional isomorphism is all that would have been apposite in this
regard. In any case the resulting theory is adequate for supporting the general program of

semantics that we have proposed, and that is what concerns us in primarily in this work.



Chapter 4

Fibrations and Comprehension

Categories

We have seen, in the previous chapter, that we can induce, on the basis of the sets of residues
of A-terms (or their equivalence classes), a theory (category) of dependent Types. In this
chapter, we shall recast this construction within a framework that is more general, and
facilitates the further development of our argument towards the construction of a full (im-
predicative) constructive Type theory; as well as embed it, in an appropriate way, within a
certain standard model of polymorphic calculi. The framework which makes this chain of
constructions both elegant and abstract is the Theory of Fibered Categories; a theory that
originated in a fairly distant field, but found recognition in the late eighties in formal seman-
tics as an abstract and general-—and perhaps the correct abstract framework, for studying
the semantics of constructive impredicative Type theories (cf. [39]). The form in which we
shall be using the main insights of the fibrations framework, is a particularly elegant con-
struction of Bart Jacobs, which he called Comprehension Categories: the idea originates in
considerations on the structure of the judgements of generalized type systems (cf. [6]) and is
particularly well-adapted to the study of their semantics. Moreover, it can be looked upon as
an easy generalization of the relatively cartesian closed structure that we have been looking
at in previous chapter. In the first section, we shall present the basic features of the theory

of fibered categories, while in the second we shall look at the structure of comprehension

categories.
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4.1 Fibered Categories

Fibered Categories provide an abstract notion of a “category varying over another;” and
thus an interpretation of Types dependent on (other) Types. Moreover, as we shall see, it
allows a precise formulation of the conditions required for modeling both dependency and
polymorphism. Thus, the notion is foundational for various paradigms for the (categorical)
interpretations of Constructive Type theories. The classical reference for the basic theory
(for the English reader) is [9); other excellent, (‘;(positions, especially in the context of models

for constructive Type theory, include [40, 61, 57).

Definition 4.1.1 Let p : E — B be a functor between arbitrary categories E and B. A
morphism g : X' — X n E 1s said to be cartesian over a morphism u = p(g) in B if, given
any morphism [ : Y — X, a factorization p(f) = uov in B uniquely determines a morphism

h:Y — X" i E such that p(h) = v, and a factorization { = go h.

Definition 4.1.2 In the context of defimtron f.1.1 above, the functor p : E — B is called
a fibration if for cvery X € E°, and arrow u : I — p(X) in B, there extsls a cartesian

morphism g : X* — X in E, such that p(g) = u. We say that X* is a re-indexing of X along

A few terminological points need to be stated; they would facilitate the discussion in the
sequel. In the context of Definitions 4.1.1 and 4.1.2, an arrow f in E such that p(f) = u for
an arrow u in B, is called an arrow above u. An arrow in E above an identity in B is called
vertical. For any I € B®, the collection of objects X of E such that p(X) = 1, along with
vertical arrows in E above idy, is called the fiber over I, and denoted by E;. We note that
this is a sub-category of E, and it is useful to think of it as the category of I-indexed families.
The cartesian morphism g corresponding to u in Definition 4.1.2 is called the cartesian lifting
of uat X.

Definition 4.1.3 Ifp:E - B isa fibration, a clcavage for p is a particular choice, for any
u € B™ and X € E° (such that p(X) = cod(n)), of a cartesian lifting of u at X. A fibration
cquipped with a particular cleavage 1s called a cloven fibration. Such a choice of a cartestan
bfting for u at X may be denoted as u(X) ' (X) = X. A collection of such choices for
every appropriste u and X -~that is, the cleavage—induces Jor every u : A — B a functor

u" :Ep — Ey4, called the re-indexing, or substitution Sunctor.,

Example 4.1.4 A sunple and well-known cxample of a fibration is based on arrow calcgorics.

For an arbitrary category B, the arrow category B™ consists of morphisms of B as objects,
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and commuting squares in B as morphisms. The functor dom : B~ — B is an ezample of
a fibration. This can be casily seen. Consider an object g : A — X in B~; and an arrow
[:Y = A =dom(g). It can be verified that the cartesian lifting of f at g, is the commuting
square, whose upper boundary 1s Y L A% X and lower boundary is Y ©f x idy X. A~
more interesting case occnrs when the category B has pullbacks: in this case the codomain
Junctor cod : B™ — B is a fibration. Consider an object g: A — X in B~; and an arrow

J:Y = X = cod(g). It can be verified that the cartesian lifting of [ at g, is the pullback
square of g along f.

Example 4.1.5 Another casy crample of a fibration can be defined as Jollows. For an ar-
bitrary category C, we define the category Fam(C) (over Sets) as having the following con-
slituents.

Objects: Objects are families {.X,},e; where I € Sets and X; € C°

Morphisms: A morphism [ : {X,},e1 = {V,},es consist of a function ¢ : I — J in Sets,
along with a famly of morphisms {f, : X, — Yoy} in C.

The functor p : Fam(C) — Sets is the obvious one: p: {X,}er = 1. We can verify that it
is a fibration. For any map u :J — I m Sets, the cartesian lifting of u at X = {Xi}ier 18
the map i(.X) : { Xy} e0 = {Xi}ier, consisting of n, and the J-indezed family of identity
maps {it; : X; — X}

We may generalize this cxample trimally to the casc of familics indered by somc sub-
category S of Sets: we designate this as Famg(C). In fact the full generalization of this
ezample—in which we would replace Sets by an arbitrary category B, leads to the theory of

fibmtions itself.

Categotical Type theoty is all about structwie in the libers, which is preserved along
the re-indexing functors and reflected into the base through certain devices. One usually
puts enough structure in the fibers to interpret the type-theoretic operations—for instance,
sums and products, and their usual relationships. llence, an important aspect of most of
this fiberwise “structuration”, is cartesian closure. Towards that end, the most elementary
notion is that of the fibered terminal object. Intuitively, a fibration could be said to have a
fibered terminal object if every liber has an (ordinary) terminal object, which is preserved
by the re-indexing functors. In order to present this idea formally, we shall adopt a general
framework within which other notions like fibered products and exponents could be naturally

expressed.
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Definition 4.1.6 Letp:E —» Bandq:D — B be fibmtions over the same basis B. A
functor 1 : E — D 1s called cartesian of go Il =p and [ is p-carlesian implies that 11{ is

g-cartesian. o

Hence, we may define a category Fib(B) having as objects, fibrations over B, and as mor-

phisms, cartesian functors as defined above. it can be verified that Fib(B) has a terminal
object—namely the Identity fibration ldg : B ~ B. In fact, it is not surprising that Fib(B)
is a 2-category: given G, H :p — ¢ in Fib(B), 2 2-cell is a natural transformation 0 : G — H
having vertical components (goq = idya)-

A well-known construction in Fib(B) is the 2-pullback (in Cat) of 2 fibration p: E - B
along an arbitrary functor K : A — B. It is well-known that this yields a fibration again,

and we state this formally.

Lemma 4.1.7 Let p: E — B be «a fibration and K : A — B an arbitrary functor; then in

the diagram below, K*(p) 1s a fibmlion

A®pE L’ E
K*(p) P
A IN B

Proof: A morphism in A (9 E consists of a pair (f,u) with f a morphism in A and u a
morphism in E, over A (f). It can be casily seen that any such f has a cartesian lifting
at any (cod(f), F), where E € Ep (cod(s)): namely (f, K(f)(E)). We also note:

(AGBE)(A, L), (A, E)= | Ex.(EE')
u€A(A,A")

where Eg(E, E’) denotes the class of morphisms E — E’ over the B-morphism Ku

This construction, whercby a new fibration is derived by pulling back along an arbitrary

functor, is known as a change of basc. ln fact, in very much the same way as in the case
“ H »

of “ordinary” category theory, products are obtained by pulling back terminal arrows along

terminal arrows, we may derive fibered products in Fib(B) by pulling back
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Lemma 4.1.8 The category Fib(B) admits finite products which are preserved under change
of basc.

Proof: Given fibrations p: E — B and ¢ : D — B, their product P X g can be seen to be

pop*(q) : E® D — B. Preservation under change of base follows quite easily. The
terminal object is the identity fibration as above

The 2-categorical structure of Fib(B) allows us to define the notion of a (fibered) adjunc-
tion.

Definition 4.1.8 Let p: E — B and ¢ : D — B be fibrations over the same basis B, and
F:p— qand G:q — p be cartesian funclors. F is called the fibered left adjoint of G if F

is an ordinary left adjoint of G, with a vertical unit  (or equivalently, a vertical co-unit €).

This definition actually yields us a family of local adjunctions Iy 4 G4 for each A € B,
between the fibers E4 and D4, by restriction. An excellent account of these notions can be
found in ([41, 40)).

We can now define the notion of fibered terminal objects formally.

Definition 4.1.10 ([41, Definition 3.5]) A fibration p : E —» B admits a terminal object if
the unique morphism from p to the terminal object n Fib(B) has a fibered right adjoint (which
we shall denote as 1).

Spelling it out, this entails that the functor 1 yields, for cach A € B, a terminal object 14
in the fiber above A, and the for any map u: A — B, the canonical map u*(18) — 14 is an
isomorphism. Moreover po1 = idg.

We turn next to the idea of fibered cartesian closure. Intuitively, we speak of a fibration
being a fibered cartesian closed category when each of the fibers is cartesian closed, and
the re-indexing functors preserve this structure (up to isomorphism of course). Recall from
Lemmas 4.1.7 and 4.1.8, that given a fibration p : E —» B, we may form in Fib(B) the self-
product px p: E® E — B. There is the obvious fiber-wise diagonal morphism A :p — px p
in Fib(B). The definition of fiber-wise cartesian products is now quite simple: recall that

cartesian products in the basic theory is defined as right adjoints of diagonal functors in Cat.
Definition 4.1.11 ([41, Definition 3.6]) A fibration p : E — B admits cartesian products if
the morphism A : p — p x p m Fib(B) has a fibered right adjoint.

This data amonnts to the following: for every A € B, there is a cartesian product in the
fiber category E, and this product is preserved by the re-indexing functor u* corresponding

toany u: B — Ain B.
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iti i jal is 8 complicated. The standard
The condition for fiberwise exponential is somewhat more I

definition through a parametrized right adjoint has to be transplanted in the fibrational
setting with some care. We furnish the following characterization, and an alternate account

~

may be found in [41].

Definition 4.1.12 Given the cartesian functor F: EQE = E in Fib(B), that is the fibered
right adjoint to the functor A, as in Dcfinition 4.1.11, we say that the fibration p has fibered
exponents, if there is a cartesian functor G ipxp— pin Fib(B), such that the mediating
morphism (G,7) : px p — p x p (in the contezt of the pullback diagram in Figure {-1) is a
fibered right adjoint to the corresponding mediating morphism (for F) (F,7) :pXp—pXp
in Fil(B), and such that all (relevant) triangles in the right hand figure commute.

(F,«) EQFE
E®F EQFE (G,1r)

(F,7)

Ll E
E |

r*(p) P

=x
E P B

Figure 4-1: Fibered Exponents.

It may be verified that this data amounts to the following: for every A € B, there is an
exponent in the fiber category E4 and this exponent, (and the usual cartesian identities) are
preserved by the re-indexing functor u* corresponding to any u : B — A in B. The above
set of definitions gives us the notion of a fibered carlesian closed calegory: that is, a fibration
having a terminal. cartesian products and exponents in every fiber, and such that all the
structure is preserved by the re indexing functors,

Wihile the notion of a fibered cartesian closed category is significant from the point of

view of interpreting some of the operations involved in theory of dependent types, a full
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interpretation involves at least two more essential features: one is the possibility of forming
generally, for any object I € B® (the base), I-indexed products and co-products; the second
is the possibility of being able to reflect (or recover) the structure of the fibers in the base.
As is well-known, this in itself is a form of the question of representability—specifically of
the fiberwise global sections functor (cf. [40, Chapter 4 §5], [61, Chapter 2 §4]), and more

generally of fiberwise hom-sets. With this in mind we have the following general definition.

Definition 4.1.13 ([61, Definition 2.4.9]) Letp: E — B be a cloven fibration (see Figure 4-
2). We say that p is locally small if for each I € B, and X,Y € E;, there is an object
[X,Y] € B, an arrow 7 : [X,Y] = I in B, and an arrow x : 7*(X) — x*(Y) in Eix,y)s
such that the following holds:

foranya : J — I in B, and an arrow f : a*(X) — a*(Y) in E; there is an
unique arrow f :J — [X,Y] in B, such that f= f‘(w?" )-
—r
E; Eixy)
a*(X) T (X)

-—
-~
3
]

-

Q

~
<
-

=(Y)

ST R —

- |®
- R

[X,Y]

Figure 4-2:

An equivalent formulation is to be found in [40); we state it here for reference.
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Definition 4.1.14 ([40, Lemma 4.5.2]) Let p : E — B bc a cloven fibration; p is locally
small if and only if for cach | € B and X, Y € Ey, the functor (B/1)°P — Ens given by

J 31 Ej(e’(X),a"(Y))

~

(where Ens is a “suitably large” universe) is representable.

Locally small fibered cartesian closed categories have all the structure required to interpret
a theory of dependent Types. The precise details of the interpretation may be consulted in
[61].

Our final point in this section has to do with the notion of a generic object for a fibration,
essential for the interpretation of a free Type variable in impredicative systems (which we
shall take up in the sequel). This idea of a “small set of objects” relative to the base is
captured in the notion of “the family of all objects” of the fibration, in the sense that any
object of any fiber may be “obtained” by re-indexing the generic object along an appropriate
morphism. Generic objects along with fibered products give us models of the polymorphic

A-Calculus, and hence is of interest to semanticists (cf. 61, Sections 2.3 and 2.4]).

Definition 4.1.15 Consider a fibration p : E — B; an object A in the fiber over pA = Qo
is known as a generic object (for p) if for any object E € E, we are given (the choice of) a

carlesian map E:E—A.

This definition implies that any object I in the liber over pF = I, can be regarded as the
re-indexing of the generic object A along a specified map E : I — Qp. Thus, the generic
object may be considered as the family of all objects in the category E. In a great many
respects this condition is an analogue of that of local smallness: in the latter, we had the
notion of the (representations) of the family of all morphisins between any two objects in
the total category. We shall see, in the next chapter, that this correspondence is not merely
figurative: locally small fibrations arc formally pretty close to fibrations with a generic object.

In the next section, we shall present a structure that consuinmates the features of a locally
small fibered cartesian closed category salient to an interpretation of a theory of dependent
Types; and in a more perspicuous manner—being defined in close correspondence with the

structure of the judgements of ihe theory.

4.2 Comprehension Categories

The notion of a Comprehension Category was introduced ([10}), to capture, essentially, the
structure of judgements in a Constructive Type Theory. The significant aspects to be inter-

preted are “context comprehension,” expressed in the assumption rule ((A € T'ype [I']) —
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[z : A > TY}), and dependency (expressed in the projection [z : A > I} = [I']). The structure
is abstracted in the following definition.

Definition 4.2.1 ([40, Definition 4.1.1]) A comprehension category is a functor of the form
P : E — B™ satisfying the conditions:

1. codo P : E — B is a fibration
2. f is cartesian in E = P([) is a pullback in B.

where cod refers to the co-domain functor cod : B~ = B:(f: X - Y)— Y. P is called a

full comprehension calegory i case P 1s a full and faithful functor. 1t is said Lo be cloven in

case the corresponding fibration is cloven.

Following Jacobs, for a comprehension category P : E — B~, we would denote the compo-
sition (cod o P) as p; and the composition (dom o P) by Py. The components PE are known
as projections, and re-indexing functors of the form PE* are known as weakening functors.
For an object E € E we write || = {u: pE — PoE|PEou = id}, and call this set— the set
of sections of E. We would call E the total category.

It is now quite easy to see that the apparatus of display maps in the constitution of a
relatively cartesian closed category generalizes to the notion of projections in a comprehension
category. Given the category B™, we denote by B™(F), the full sub-category of B~ with
display maps as objects. Then the inclusion B™(F) < B™ gives us a full comprehension
category. While this is an elementary result, we spell out the proof (in tutorial detail!) as an

example of the intricacies involved in reasoning in the context of fibrations.

Proposition 4.2.2 Given the calegory B, along with a subcategory (of B™ ) of display maps

B~ (F), the inclusion B™(F) — B™ gwes us a full comprehension category.

Proof: We shall use the following conventions: the category B™(F) shall be denoted as E;
(codo <) as p; (domo —) as Py and — as P. It is casy to sce that p is a fibration: for
any object A : PoA — pA in E, and any arrow u : b — a = pA, the cartesian lifting
of u at A is the pullback square of PA along u; the closure property of display maps

guarantees that the domain of the lifting is in the appropriate fiber.

TFor the second condition, we shall refer to Figure 4-3. Let us suppose that we have a
cartesian morphism £ 13 — A in E; above uta — b (we denote pA by @ and pl3 by
b). We have the pullback of A along u as shown; Since we have a full sub-category,
this is the image under P ol a morphism 7 : Ay — A in E. The square Pf (which is

the embedding square in the lower frame) is commuting; hence we have the mediating
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Pol3 Pof

oV
Po 1

PoAs
PB
PA,

PoA

PA

Figure 4-3: Display map categories.
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morphism from PoB to PyAy; this is the image, under Py of a morphism po: B — A
in E, and such that f = w o u. Now due to the cartesian-ness of 7, we have an unique
morphism » : Ay — B, such that 7 = for. Now, the universal property of the pullback
qualifies 7 too as a cartesian lifting of u at A. Since both 7 and f are cartesian liftings
of u, we may assert that they are isomorphic, and hence the proposition. The reader
may see this more explicitly in the situation depicted in the lower triangle in the top
frame(s). The cartesian-ness of f allows us an unique morphism such that this lower
triangle commutes; hence we must have that idg = v o u. Reasoning by parity about
the other cartesian lifting 7, we derive that id4, = pov. Hence Ay & B, which implies
that Pf is isomorphic to] the pullback.

Finally the fullness of the comprehension category is obvious by virtue of the fullness

of the corresponding sub-category.

On the other hand, we can show that every comprehension category determines a category
of display maps: we shall return to this after a few technical lemmas have been established.
All of them are elementary and are to be found in Jacob’s thesis ([40]); we restate the ones

(in the form) that we would need in the sequel, and lay out their proofs more explicitly.

Lemma 4.2.3 ([40, Lemma 4.1.7])) Let P : E — B~ be a comprehension category. For
every E € E and u: A — pE in B, onc has a pullback of PE along u of the form shown in
Figure 4-4.

Pou*(E) Pou(E) PoE
Pu*(E) PE
A u T pE

Figure 4-4: General form of Pullbacks for Comprehension Categories.

Proof: Since p = cod o P is a fibration, we must have a cartesian lifting of u at E—that is,
a cartesian morphism @(E): u*(E) — E in E above u. But then by definition, P@(E)

must be a pullback in B, and hence the proposition.
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Lemuna 4.2.4 ([10, Lemma 4.1 8]) Lot P2 B - B~ be a comprehension calegory; then, Jor
every u: A — pE 1n B, we have that |u*(E)| = B/pE(u,PE)-

Proof: By definition ~

{v: p(u*(E)) = Po(u*(E))| Pu*(E) o v = id}
{v: A = Po(u"(E))|Pu(E)ov = id}

lu"(E)

since p(u*(E)) = A. Now, by Lemma 4.2.3 any such v yields w = Poii(E)ov: A = PoE.
Also, PE o w = PE o Poii(E) o v = uo Pu*(E) o v since PEo Po( E) = u o Pu*(E);

but then Pu*(E)ov = id4 by definition. Hence we may write:

|[u(E)] 2 {w:A— PoE|PEow=u}
B/pE(u, PE)

1R

by definition of morphisms in the slices.
Corollary 4.2.5 B(A,PoE) = ¥, 4,5 [v"(E)|

Proof: We can see that B(A, PoE) = ¥}, o—pg B/pE(u, PE). Hence, using this lemma, the

proposition.
We can sce now that any comprehension category renders us a display map category.

Proposition 4.2.8 Any Comprehension category P : E — B~ yields us a class of maps
{PE|E € E} in B that is onc of display maps.

Proof: The class {PE|E € E} can be thought of as a class of display maps, since the pullback

of any of them along an arbitrary morphisin remains in the class (Lemma 4.2.3).

Hence comprehension categories have the basic structure needed to model the constructions
within display map categories. .

We can develop all the notions of fiberwise structure we have mentioned earlier. Consider
the notion of a fibered terminal object: we follow Jacobs in formulating this concept in terms
of Erhard’s D-categortes ([18]).

Definition 4.2.7 ({10, Definition 1.1 5]) A comprehension category with unit is given by a

Sibration p : E — B, provided with a ternunal object functor 1 : B — E which has a right
adjoint Py : E — B.

We may spell out precisely how this gives rise to a comprehension category.
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E Po B
E PoE
f &B Pof Poi
F IRE| [PE Pop PolR
a
EF
1 2 a
¢ “ 4 ”n
1P F 19 1R R
1
Figure 4-5:

Proposition 4.2.8 In the context of Definition 4.2.7, we have a comprehension category

P:E — B~ given by P : E — p(eg) where ¢ is the co-unit of the adjunction.

Proof: We have the situation depicted in Figure 4-5. We assume that we are given a cartesian
map f: E — Fin E, and hence the problem is to show that the top square in Figure 4-5
is a pullback. We note first, that it commutes. This is casy to sce; using the property
of the terminal object functor that po 1 = idp, it is nothing but the image under p
of the morphism 1Py(f) — f in E~, which commutes by the property of adjunctions.
Now we have to establish its universality; consider an object R, given with morphisms
a: R — PyE, and b: R — pF in B, and such that PEoa = pfob. Transposing a
across the adjunction we have @ : 110 — I in E, and a commuting triangle @ = €50 1a.

Taking the image of this under p we have

p(@¢) = plep)op(la)
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PEoa
= pfob

by hypothesis. Hen;e, since p(@) factorizes through pf, we have, as a consequence of
the cartesian-ness of f, an unique map ¢ : 1R = F such that pp = band @ = fop.
Transposing ¢ across the adjunction, we have the morphism ¢ : R — PoF. We claim
that ¢ is the mediating morphism. Tor see this note that ¢ = €F o 1¢ through the

adjunction. Hence,

p(¢) = pler)op(19)
= PFO¢

But p(¢) = b; hence we have that b = PFo@. On the other hand, we havea = Po(@)onr;
but & = f o ¢; hence Po(@) = Pof o Poyp. Thus we have that a = Pof o Poy o n1r; but

then Pop o 7 = @; hence we have that a = Popf o ¢. Hence the proposition.

The next result illustrates interesting properties of the fibered terminal object, for a

comprehension category with unit: notably that fibered global sections correspond to what

we have called “sections” in the base; and that morphisms in the slices are preserved in the

fibers via the domains of cartesian functors.

Proposition 4.2.9 ([40, Lemma 4.1.10]) Let P : E — B~ be a comprehension category with
unit, vial: B — E. Then

1. for E € Ey, |E| 2 Ef(1A,F);

2. for E€ Ey, and u: A — pE, B/pE(u,PE) & E4s(1A,u*(E))

Proof: Let us consider the first proposition. We have, for every 8 € E4(1A,FE), that its

transpose § across the adjunction satisfies s = ¢g 0 13. Hence

p(s) p(eg) o p(13)

p(EE)o §

i

since po1 = Idy; but then p(s) = idy; hence we have that p(eg) o & = idy, which
implies that & € |E]. Converscly, starting out with any r € | L], we shall have an unique
7114 — E in Ex—its transpose. llence, for E € Ey, |E| 2 E4(1A,E). As for
the second proposition, by Lemma 4.2.4, for every u : A — pE in B, we have that

|w*(E) = B/pF(u, PE); but by the previous result, [u*(E)| EA(1A,u*(E)).
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Fiberwise cartesian closure may be refined, in the context of Comprehension categories,

into explicit structural conditions for “sums” and “products;” the interpretation of these
type-theoretic operations are defined through a translation of the corresponding notions in
the context of hyperdoctrines ([76]), triposes ([37)), or PL-categories ([78]): that is sum and

product types are defined through left and right adjunctions to relevant substitution functors
and take the following form.

Definition 4.2.10 ([40, Definition 4.2.1]) Let P :E — B~ bea comprehension category; we
say that P has products (respectively sums) if for any E € E the weakening functor PE* has

a right adjoint g (respectively, a left adjoint ), satisfying the Beck-Chevalley condition
stated below.

o For every cartesian morphism f: £ — E' in E, the (canonical) natural transformation
(pf)y g = Ng(Pof)" (respectively Sg(Pof)” = (pf)*Ter)
is an isomorphism.

The structure adumbrated in Definition 4.2.10 is that needed to model what are known
as weak sums in Type theory (cf. {40, Chapter 2 §2.4]). To interpret sirong sums, we have a

stronger condition, which we detail below.

Definition 4.2.11 ([40, Definition 4.2.10]) Consider a comprehension category p : E — B
having sums. In any comprehension category, we have for any E, D € E such that pD = PyE,
the map compy(D)=PFEony : D — PE*(L5.D) — Lp.D. We say that P has strong sums

tf the following condition obtans:

Jor every compp(D) as above, and for every D' in E, and u, v € B forming a
commultalive squarc (see Iigure §-6), there is an unique w € B satisfying PL' o

w = v and u = w o Po(compg(D)).

It is known that the condition for strong sums is logically equivalent to the condition that the
morphism Py(comp (D)) be an isomorphism; this is the form in which we shall demonstrate
this property in the sequel.

Finally we have the following unit that gives us all we need to interpret a theory of

dependent types (with strong sums).

Definition 4.2.12 A closed comprehension category is a full comprehension category with

unit, products and strong sums, and having a terminal object in the base.
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Po(compp(D))

PD'

Figure 4-6: Condition for strong sums.

This epitomizes all the properties of a locally small fibered cartesian closed category, as
remarked earlier. We state the following proposition for reference, and provide a suggestion

of the proof.

Theorem 4.2.13 ([40, Lemma 4.3.9]) For a Closed Comprehension Category P :E — B,

the fibration p = cod o P is a fibered cartesian closed category.

Proof: As stated in the reference, strong sums are not needed for the proof. For objects
E and E' in the fiber E,f, the cartesian product E x E' is SgPE*(E’). The second
projection mg : E x E' — k' may be seen to be the co-unit ¢gr of the adjunction
$E 4 PE*. As for the first projection, we have the following construction: we have the
pullback square of P I along itself, yielding us the morphism PE*( E); we also have the
pullback of PE' along PLE. yiclding us the morphism PE*(E'); this morphism gives
us a cone over the appropriate diagram of the first pullback square. There is thus a
mediating morphism f: PE*(E') — PE*(E) in the fiber Ep,g, and we may transpose
it across the adjunction, obtaining a morphism f*: X, PE*(E') — E. This is the first
projection 7. As for the exponent, it is fairly straightforward though tedious to verify
that E = E' = IgPE*(E').

We turn now to the close relationship between comprehension categories and display map
categories: we have remarked carlier that they really “amount to the same thing;” addi-
tionally, since closed comprehension categories can interpret a theory of dependent types
(with strong sums), we would anticipate that relative cartesian closure of display map cat-
egorics required for interpreting the same class of theories, would correspond to the closure

of the corresponding comprehension category. We give a brief idea of a proof, which is quite

straightforward.
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Proposition 4.2.14 Given a display map category B, the corresponding Comprehension cat-
egory described in Lemma 4.2.2 has sums and products if and only if B is relatively cartesian
closed. Conversely, for any comprehension category, the corresponding display map category

is relatively cartesian closed ezactly when the former has sums and products.

Proof: If B is relatively cartesian closed, then for any display map F, the pullback functor F*
has left and right adjoints (satisfying the Beck-Chevalley condition). Since the objects
of the total catcgory of the comprehension category are exactly the display maps, the
condition is exactly equivalent to requiring that the comprehension category has sums
and products. The converse follows on the same consideration. Similarly for the second

part.

This tells us, in particular, that the category S of the previous chapter may be cast in the form
of a closed comprehension category. We shall see details of this construction in Chapter 6.
Finally, we shall demonstrate that comprehension categories (with unit) correspond pretty
exactly to the locally small fibered cartesian closed categories of the last section—which is
in fact what we would expect, given our understanding of local smallness as that general
fibrational property that is a basis for the interpretation of a theory of dependent Types. We

have the following result.

Theorem 4.2.15 ([40, Proposition 4.5.5]) Let p: E — B be a fibered cartesian closed cate-
gory. Then

p is locally small if and only if there is a comprehension category with unit, P :
E — B~ such that p=codoP.

Proof: Let 1: E — B denote the fibered terminal object.

= From Definition 4.2.7, we have to prove the existence of a functor P : E — B right
adjoint to 1. Consider E € E, for some A € B. Let us put PE =7 : [1A,E] — 4;

now for any B € B we have the following sequence of isomorphisms:

E(1B,E) 2 W.p-sEp(1B,u"(E)) by property of cartesian maps
2 W, Ep(u(14),u"(£)) since 1B = u*(14)
~ Y, y—a B/A(n,PE) by definition of P, and local smallness
> B(B,Pukl) putting Py = domo P

The naturality of this isomorphism in E and B is straightforward. Hence we see

that the functor Po as defined is a right adjoint to 1.
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. . 7 :
& We have to demonstrate the existence of a representing arrow ¥ : [E,E')—» AinB

for any E, E' € E; consider any u: B— Ain B. We have

Eg(uv*(E)N*(E') ¥ Ep(1B,u*(E)=u'(£') fiberwise exponents
Ep(1B,v*(E = E') fibered exponents
B/A(u,P(E = E') from Proposition 4.2.9

1R

R

Hence we may take P(E = I') as the appropriale representing arrow.

The final remark we have is regarding the generalization of the notion of products and

sums to fibrations relative to comprehension categories. We have the following definition.

Definition 4.2.16 ([40, Definition 4.2.1]) Let ¢ : D — B be a fibration and P : E — B~
be a comprehension category. We say that q has P-products (respectively P-sums) if for any
E € E the weakening functor PE* : D,g — Dp,g has a right adjoint Ilg (respectively, a left
adjoint L), satisfying the Beck-Chevalley condition stated in Definition 4.2.10.

The fibration D may arise {rom a comprehension category D : E — B™, in which case we
say that D has P-products (or P-sums).

This completes our exposition of the basic structures involved in the interpretation of
theories of dependent Types. In the next chapter we continue the exposition towards the

theme of impredicative theories.



Chapter 5

Full Internal Sub-Categories

A theory of dependent types is a generalization of the typed A-Calculus, in very much the
same way that (First-order) predicate logic is a generalization of the propositional logic;
their correspondence being along the Curry-Howard isomorphism. Semantically, this gener-
alization does not add any level of complexity: as in the case of the semantics of the typed
A-Calculus, we may very well remain within (fibrations over) a (classical) universe of sets;
we need only a local form of completeness, which essentially amounts to having products
(and co-products) indexed by objects of the base category. A level of complexity however
may be added when we consider generalizations to various impredicative calculi: the most
straightforward generalization is of course to consider the polymorphic A-Calculus; this is, as
we know, the calculus of the proofs of second-order logic ({24, 27, 48, 78]). Universal quantifi-
cation over all propositions is impredicative, and local forms of completeness no longer suffice;
in other words, we may not remain any more within classical set theory ([65]). Uistorically,
this problem was solved by constructing global limits within a non-classical universe of sets
([62]): specifically, through the construction of a small complete category within an intuition-
istic universe ([34, 36]). Such an object is essentially an internal category within the ambient
topos (which is the categorical form of an intuitionistic universe) and closed under all (inter-
nal) limits (suitably defined). The interaction between the two forms of completeness—or,
in other words, the requirement that both dependent and impredicative forms of quantifi-
cation be modeled within the same framework, adds a considerable degree of complexity
to the problem. The appropriate level at which one has to work, then, is one at which
the fibrational and the internal categorical framework may be seen as intrinsically related,
and their structural effects be epitomized within a single general framework. Within such a
framework, the small complete category is more appositely structured as an object known

as a full internal sub-category ([34]). In fact, the original construction of a small complete
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category by Hyland, was facilitated by the requirement that the object constructed be a full
internal sub-category of the ambient topos. For such objects, the (internal) global sections
functor is full and faithful, and the (internal) limit structure is “determined” by that of the
ambient category. The framework within which the fibrational and internal categorical struc-
tures may be synthesized, is obtained as the generalization of the Hyland-Pitts model of the
Theory of Constructions (within a fibrational framework)—and is titled CC-Category by B.
Jacobs ([40]). In this chapter, we shall provide an account of this development, culminating
in the description of a CC-Category, and of a full internal sub-category—the latter being the
form in which, in the subsequent chapters, we shall embed our system of Types within the

Realizability Topos.

5.1 Internal Categories

In this section we provide a brief introduction to the notion of an internal category. The
matter will be mainly expository and for most of the advanced results and proofs, we shall
refer the reader to the references. In some sense, internal category theory complements the
theoretical function of fibered category theory. Both allow us a formulation of a theory of
variable categories, and each has its particular elegance. Fibrations is probably a more general
framework, and offers a more intuitive notion of dependent objects. Moreover, the framework
permits a formulation of a class of related abstract objects—sheaves and fiber bundles to name
two. On the other hand, internal categories offer an intuitive notion of categories relative
to an “universe”  for instance, topological groups, and “synthetic” objects  as manifolds or
domains relative to a topos. As we shall see, this allows a fine-grained and elegant treatment
of matters like completeness. In the last chapter, we shall explore the synthetic approach
vis-a-vis domains—an investigation that assumes considerable theoretical importance in view
of the fact that domains can now be thought of as sets and with full function spaces, in the
spirit of Pitt’s shibboleth, “Polymorphism is set-thcoretic, constructively.” There is of course,
a correlation between the two frameworks, and we shall comment on that towards the end of
this section.

We shall work witkin a category B that is assumed to have pullbacks. The definition
of an internal category is a simple gencralization of the idea of an algebraic object within a
category—for instance, a monoid object or a ring object (cf. [49, Chapter 3 §6}). The logical
axioms for a category belong to a certain class of logical theories, which may be modeled in
any category with finite limits. This class is named Lim theories by Hyland and Pitts ([38]),

and left-ezact theorics by Barr and Wells ({7]). The relevant structures needed to model the
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axioms of this theory are described below (cf. [4, Chapter 7}, [42, Chapter 2)).
Definition 5.1.1 Aninternal category E (relatrive to an ambient category B) is a 6-tuple
(Eo, Er,00,0,,idg, og)
where the types of each component are as follows:
Eo, E| H Bo
00,01 : Ey - E
idE N E() and E1
g : E; - E

where the object E; (and other objects involved in the cor tation conditions in the sequel)
are as defined 1n the cluster of (four) pullback diagrams at the bottom of Figure 5-1, and the

diagrams shown in the rest of the figure commute.

The attentive reader would probably note that an isomorphism involved in the figure stating
the associativity for composition has been elided. The commuting diagrams are simply a
categorical form of the corresponding axioms for a category object, as may be easily verified.
Thus, an internal category is simply a category object in an (ambient) category that has
enough structure to satisfy the the axioms in its definition. In the definition above, the
component Fy is the object of objects of the internal category E, while E is the object of
morphisms; dp and 9; are the domain and co-domain morphisms respectively, while idg and
og are the internal identity and internal composition respectively. A simple example of an
internal category is the discrete category |D| obtained from any object D € BY: its object of
objects and that of morphisms are both D, while the internal identity is simply the identity
idp, while the other components follow from these conditions immediately.

We may carry out many of the standard constructions in Category theory internally. The

definition of an internal functor is a case in point and we provide the definition below.

Definition 5.1.2 An internal functor F between internal categories E and E' consists of a
pair of morphisms Fy : By — E} and Fy : Ey — EY, and such that the following commutation
conditions are satisfied.
Fooby = 66 oy
Ipody = 0ok
Fyoidg = idgolkp

IFyoeg = egio (I x 1)
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Figure 5-1: Internal Categories.
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m o ) N 5 H .
Phus, we have the category of internal categories (of B), which we denote as Cat(B). In

fact, as is well-known, we have a 2-Categorical structure on Cat(B) ([40, Chapter 1 §4]).

Definition 5.1.3 A natural transformation o : F <+ G (where F,G : E — E' are internal

functors) is given as a morphism o : Eg — E| which makes the diagrams in Figure 5-2
commute.

EO E] (0 an,G;) E;
F
o o Go (F1,008,) g/
% 9
£, E BB ® £,

Figure 5-2: Internal Natural Transformations.

The most significant benefit of being able to endow Cat(B) with a 2-categorical structure is
that we may define internal adjunctions on its basis. Actually there are two ways of going
about this: one may consider the (standard) definition of an adjunction as a triple consisting
of two functors, and a bijection between certain hom-sets in the two categories: however,
this requires the notion of an indexed collection of isomorphisms between objects that can
represent hom-sets. This can be done through the notion of an internal presheaf on the
objects in Cat(B); an excellent exposition of this method is in [4]. The other way is to use
an alternative definition of an adjunction: for which we refer the reader to [19, Chapter 4,
Theorem 2J. ‘The essential idea is that an adjunction can be defined in terms of two natural
transformations, and certain composite transformations that evaluate to the identity natural

transformation; we have the following definition.

Definition 5.1.4 Given internal categories C and D (in some ambient category), and in-
ternal functors F : C — D and G : D — C, and natural transformations n : idg — GF
and ¢ : idp - FG (where idy denotes the identity functor on the internal category X), we
say that F is a left adjoint G, or G 1s a right adjoint to F, or that (F,G.n,€) constitutes an

adjunction between C and D of and only if the following commutations obtain.

325, 6rG 4 6 = idg

P pGE L P =idre
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where idy, for a internal functor X denotes the identity natural transformation on X, and

the relevant composthion of natural transformations is the vertical composition.

On this basis, we can Broceed to define the significant notion of an internal cartesian closed

category. We provide a brief sketch of the process, referring the reader to [40, Chapter 1 §4]
for the details.

Construction 5.1.5 An internal calcgory'E in Cat(B) ts said to have an internal terminal
object, if the unique internal functor 1g : E — |1| (where 1 is the terminal object of B), has an
(internal) right adjoint. E is said to have internal cartesian products if the (internal) diagonal
functor A : E — E x E has an (nternal) right adjoint (- X -). From the functor (-x -), and the
melusion functor 1t |1y = E we may construct the fun('tr)r(—~_x—-): |Eo| x E — | Eg| x E—and

we say that E has wmternal exponents 1f (- x -) has an (mternal) right adjoint.

In this thesis, we shall not be using too many of these concepts: we shall demonstrate a
somewhat more complicated limit structure on the internal category we would construct in
the next chapter, and an exposition of this structure within the current framework would be
rather cumbersome. On the other hand, if the internal category meets certain conditions—
and thus admitting the structure of what is known as a full internal sub-category—then the
limit structure of this category “agrees” with (in fact, is determined by) that of the ambient
category. Hence the corresponding properties are easier to state and prove, and we shall
adopt this method.

The notion whicl is essential for defining the conditions under which an internal category
qualifies as a full internal sub-category, is that of externalization. It is also the notion that
illustrates the underlying correlation between the theory of internal categories, and that of
fibrations ([4, Chapter 7, §4,5], [40, Chapter 1 §4]). We furnish the following definition.

Definition 5.1.8 For an mternal calegory M m Cay(B) we define the externalization of M

as the category 3= M haveng the followsng constituents.
Objects: Objccts are (A, f: A — My), for A € BY.

Morphisms: A morphism (A, f: A — Mp) — (B,g: B — Mq) are pairs (u,h) such that

u:A— Bandh:A— M, are morplisms in B, and the Jollowing equations hold.

doh=f 0Ooh=gou

We may define a functor [M] : "M — B as illustrated in Proposition 5.1.7 below; the

interesting fact is that this is a fibration.
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Proposition 5.1.7 The functor [M]: M — B defined so as to have the Jollowing action

(A, A~ Mgy A (u,h) — u

is a fibration.

Proof: Obtains casily on the following consideration: for an object (4, f : A — Mg) in =M,
and a morphism g : X — A = [MJ((4, f)), the cartesian lifting of g at (A, f) can be
seen to be the morphism (g,k) : (B, f o g) — (A, f) where k = idMo(fog): B— M.

This correspondence actually has a deeper structure: it may be extended so as to yield a
2-functor Cat(M) — Fib(M). For details we refer the reader to |40, ibid]. A fibration would
be said to be smallif it is equivalent to a fibration obtained from the externalization of some
internal category.

The complementarity between the two approaches towards a theory of variable categories
(that is, internal category theory and fibered category theory) is partially exemplified by
Proposition 5.1.7: every internal category yields a (split) fibration through its externalization.
Moreover, we may note that this fibration is essentially a B-indexed category. Assuming B
is locally small, the structure of the this indexed category is such as to be, essentially, an
internal category in the presheaf category SetsB”. There is, in fact, the converse aspect
to the complementarity: every (split) fibration yields an internal category in the presheaf

category. We state the result below for completeness.

Proposition 5.1.8 ([40, Proposition 1.4.8]) Let p : E — B be a split fibration, such that
B is locally small, and all fibralions are small: there exists an internal category p in the
pre-sheaf category B= Setsnu", and a change-of-base condition shown in Figure 5-3, where
Y is the Yoneda embedding.

Proof: We sketch the outlines of the proof; the details may be checked up in the cited
reference. The object of objects of the internal category is po : B — Sets : 4 —
Obj(E4) while the object of morphisins is py : B — Sets : A — Mor(E4). The rest
of the internal category structure is fairly obvious. The functor /f : E — Y-(p) is given
as Il : E — (Y(pE), E) where E is the natural transformation Y (pE) — o given as
E.:(u:z — pE)— u*(E) € E,. The rest of the details are not difficult to fill in.

With this brief sketeh of the theory of internal categories, we end this section. In the next
to sections we shall look at two important aspects of this theory: the notions of completeness,
for internal categorios (and fibrations), and subsequently, the notion of a full internal sub-

category.
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E n >(p)
P [5)
B Y B

Figure 5-3: Internalization.

5.2 Notions of Completeness

Much of the material in this scction is far more general than what we would be requiring for
the subsequent development of the thesis; we include it mainly for the sake of completeness.
The translation of the standard notions of completeness from “naive” category theory to
internal category theory is deeper than what one might expect. Moreover, it is in this respect,
that internal category theory is found to offer a more fine-grained notion of completeness (than
fibered category theory): the notions may be translated in terms of fibrations, but, as we
would see, they would not be very intuitive. We start with notions of completeness for fibered

categories. The following definition is standard and is (I think) due to Bénabou.
Definition 5.2.1 A fibration is said to be (strongly) complete if it has:

o fibered products— i.e., for every morphism ¢ in the base, the re-indezing functor ¢* has

a right adjoint 114 satisfying the Beck-Chevalley condition.
o fiberwise fintte hunats.

This is the notion that we shall usually mean when we describe a fibration as complete. How-
ever, when we formulate the notion of completeness for internal categories, and specifically in
the case of categories internal to a topos, we shall have two non-equivalent formulations—one
being described as weak and the other as strong. Thus, in the spirit of the complementarity
between internal categorics and fibered categories, we would require a corresponding notion
of weak completeness for fibrations. This notion is not very intuitive and an appreciation
of the issues involved would require some idea of the semantics of intuitionistic logic (the
Kripke-Joyal semantics): we shall not elaborate this! but merely record the definition for the

Vegss . - . . 0
The idea, very approximately, 18 this (familiarit

y with the internal language of a topos (cf. Chapter 7
would help): the notion of completeness, when phr. N hos (<f " )

ascd in the internal language of a topos, requires a notion
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sake of “completeness.”

Definition 5.2.2 ([61, Definition 3.8.39]) A fibration p : E — B is said to be weakly com-
plete if the following conditions hold.

o Given any finite diagram D in any fiber Ej, there is an epimorphisma : K — I in B,

such that a*(D) has a limit in E, and re-indezing funciors preserve finite limits.

¢ Given any map ¢ : J — I, there is an epimorphism o : K — I such that ifY:JQIK —
K is the obvious map in the pullback (diagram) of ¢ along a, then y* has a right adjoint
Ily, and all such right adjoints satisfy the Beck-Chevalley condition.

We come now to the problem of framing corresponding notions of completeness for internal
categories. The implicit assumption here is that we arc in the context of categories internal
to a topos. The situation is more nuanced here, and we have a range of possible formulations
that confront us. The standard guideline in this field has been to formulate the property
in such terms as to yield us models of the impredicative and dependent Type theories—in
particular, the theory of Constructions. The basic idea that the internal category should
come equipped with the structure of a category with finite limits, is refined in two directions:
first, that we should consider not just single diagrams and their limiting cones, but a family
of diagrams (possibly) of varying shapes (cf. (61, pages 81-84], [66]); second, it is one thing
to frame this condition in the internal language and require its validity, and quite another
to require the actual existence of the structure that fulfills it (since the axiom of choice may

fail). Taking these into considerations, we have the following formulations?.

Definition 5.2.3 ([61, Definition 3.8.34]) We say that an internal category C € Cat(B) is
weakly complete if for all objects I € B, and for all internal categories D in the slice topos
B/I, the following validity holds.

= YF : [D,I*(C)). “The category of cones over F has a terminal object”

where [D, 1*(C)] denotes the calegory of internal functors from D to I*(C) both internal
categories in B/I, and the quoted statement is understood as an appropriate internal language

statement.

of validity that ix local. Now local validity (or local truth, to use Crothendieck’s nsage) means “truc on A

cover,” or in other words, true with respect to a covering object (¢f [28, Chapter 14]). When we tru‘nlate this

in appropriate terms, we arrive at the formnlation above. A fuller exposition of this may be fon‘nd in [61).
IWe anticipate the exposition m Chapter 7, of the mternal logic of a topos; the reader may like to refer to

this for the relevant basic notions
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The definition for strong completeness on the other hand actually asserts the existence of a

limiting cone. It has the following form.

~

Definition §.2.4 We say that an internal category C € Cat(B) is strongly complete if for
all objects I € B, and for all internal categories D in the slice topos B/I, the diagonal functor
A : I*(C) — [D,I*(C)] has a right adjoint.
This definition thus asserts that for any I-indexed family of diagrams (of possibly varying
sizes) in C, there exists a function that to each i € I assigns a limit cone in C over the
corresponding diagram.

Finally we have the result connecting the notions of completeness for fibrations and in-

ternal categories, which we record for reference (cf. [36)).

Theorem 5.2.5 ({36, Proposition 4.4]) An internal category C in a topos B is strongly (re-
spectively, weakly) complete, if and only if its ezternalization 3°(C) is strongly (respectively,

weakly) complete.

As we have mentioned at the beginning of this section, the definitions above are of greater
generality than what we would be requiring for our purpose. The fibrational model for the
theory of Constructions needs, essentially, fibered products and sums (defined in the similar
fashion as products—i.e. in terms of left adjoints to re-indexing functors). Moreover, the
basic theory is developed in an ambient category that is not a topos (but one that is, as we
shall see, a sub-category of a quasi-topos): hence the weak notions are not of much relevance
to us. Thus we would mainly be using the notion of strong completeness for fibered categories
(comprehension categories, to be precise, and with the requirement of fibered sums instead
of general fiberwise finite limits). The corresponding notion of completeness (let us name it
CC-completeness) in torms of infernal tategories would be framed in the next section, once

we have the notion of a full internal sub-category.

5.3  Full Internal Sub-categories

The notion of an internal full sub-category (or full internal sub-category) is an interesting
and rich one: it allows a compact and clegant description of many of the phenomena we are
interested in—particularly the various limit structures required or available in either of the
frameworks we have studied (fibered or internal). In fact, because of its peculiar constitution,
it may be seen to stand at the Jjunction of the two modes of description, and allows a passage
between the internal mode of description and the fibered mode.

In particular instances of the

ambient category, the limit structure of the internal category confirms to that of the ambient
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category, simplifying much of the burden of proof  and in fact of definition, as we shall see

‘The essential idea behind this object is that it is an internal category, but one which is
(isomorphic to) some full sub-category of the ambient category. The notion originated from
the consideration, that for any morphism f in a topos. it should be possible to construct the
(internal) category corresponding to the full sub-category consisting of the fibers of f. We

present a systematic description below.

Construction 5.3.1 ([34, Section 0.1]) We present the basic structures that would be in-
voked in the definition of a funclor known as the (internal) global sections functor [J(M) :
Y(M) — B~ (for an inlernal category C € Ca\(B)) dcfined below. We consider an object
[ : A= Mg in the fiber of (M) over A. The internal calegory M is assumed to have an
wnternal termanal obyect, defined according to the notion of strong completeness presented in
the last section. Consider the sequence of pullbacks shown in Figure 5-4 (top, left). The map
(L,idM,) : Mo — Mo x Mo is constituled by the constant map L : My — My that maps every
object to the terminal object, and the identity map idpy, on Mo. The pullbacks give us an
object f*(p) that we shall take to be the image of the object f : A — Mo under the action
of the functor. Consider now, the notion of a generic family of maps, s : Po — Py. The
objects Po and Py are obtained through the second and third pullbacks shown (top, right and
second row, left). Since the map (L,idm,) s @ monic, so is the map k in the first pullback:
hence X 1s a sub-object of My, which implies that Iy is a sub-object of My —the object of
composable morphisms (we ignore some trivial isomorphisms). Hence internal composition
oM ‘“restricts” to Py and we casily derive that po ey = 9y 0 g. Thus we have a mediating
morphism s : Py — Py in the fourth diagram (second row, right), and this gives us the generic
family of maps. Now we consider a map (A, f: A — Mo) — (A,g: A — Mo) in the fiber of
the externalization over A which is essentially a morphism h : A — My. We can pullback
the generic family along h (as shown i the fifth figurc, i the thud row), and thus obtain a
morphism h*(s). We also have that f = oo h and g = 8y oh and hence the last figure allows
us to conclude that h*(I) & R (where R 15 the domain of [*(p)) and h*(Fo) = S (where §
is the domain of g*(p)). Hence h*(s) can be construed as a map [J(M)(f) — LI(M)(g), and
hence the image of the map (A, f: A — Mo) = (A,g: A — Mo) considered.

Definition 5.3.2 We describe the action of a functor known as the (internal) global sections
functor, [[(M) : ©(M) — B~ for an wternal catcgory C € Cat(B), and where we assume
that B ha‘s; all the structure needed to perform the construction. The action of [[(M) is

described as follows.
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Figure 5-4: The internal global sections functor.
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On Objects: For an object f: A — My in the fiber of Y(C) over A, the action is to map
it to the object f*(p) shown in the Figure 5-4,

On Morphisms: For a morphism (A, f: A~ M) - (A,g: A= My) in the fiber over A,
given as (ida,h) where h: A — My, the action of [I(M) is to map it to the morphism
h*(s) indicated in the Figure 5-4.

The global sections functor thus intuitively corresponds to the notion of mapping an I-
indexed collection of objects of an internal category onto an /-indexed collection of objects
representing the (internal) global sections of the former. On its basis we may define the
notion of a full internal sub-category. Recall that a full sub-category in the fibrational setting
consists essentially of a collection of display maps: notionally, the display maps represent
families of objects of some (naive) sub-category of the ambient category, indexed by objects
of the latter. In the case that the ambient category B is a topos (or at least locally cartesian
closed), we may formulate this notion as a fibration E with a full and faithful cartesian functor

to the codomain fibration B~ — B. In the general case we have the following definition.

Definition 5.3.3 An internal category M ¢ Cat(B) is said to be a full internal sub-category
if there is a full comprehension category of the form illustrated in Figure 5-5, which preserves

fibered terminal objects if any.

M) 1(M) B~

M] cod

B
Figure 5-5: A full internal sub-category.

Thus, a full internal sub-category is one for which the (internal) global sections functor is a
full comprehension category (and of course, with the commutation expressed in the figure).
It may be interesting to contrast our definition with that given in [40, Definition 4.5.10].
The principal virtue of full internal sub-categories is that their limit structure agrees with
that of the ambient category in an appropriate sense. The sense in which this is so, can

T : ich is ps v of this subject. We
be conveyed through ‘Theorem 5.3.4 below, which is part of the folklore of t j
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shall not prove it here, and a fuller account may he fonnd in [34, Section 0.2]. The notion
of a full internal sub-category was developed initially in connection with a topos, and the
theorem is set in that cdntext. As we have mentioned, in this setting, a full sub-category
(in the fibrational sense) is given as fibration E with a full and faithful cartesian functor to
the codomain fibration B~ — B. In terms of indexed categories, this may be represented
as a full and faithful functor of indexed categories E(C) — B/C. We have the following

proposition.

Theorem 5.3.4 Let E be a full sub-category of a locally cartesian closed category B, with a
terminal object, and so that the functor (of indezed categories) E(C) — B/C (where E(C) =
Ec) preserves the terminal object; then, +f E has finite limits, (i.e. fiberwise finite limits) and

indezed products (i.c. fibered products), then these are preserved by the functor E(C) — B/C.

Since fibered limits and products are generally families of such indexed by the objects of B,
then when E is the externalization of an internal category, we may say that the limit structure
of the internal category agrees with that of the ambient category. In the general case, when
the ambient category is not locally cartesian closed, we may use the Theorem to formulate a
definition of what it may mean for an internal category to be, for instance, relatively cartesian
closed. Intuitively, it means, of course that the category is (internally) equipped with the

structure of a relatively cartesian closed category. We may state this precisely as follows.

Definition 5.3.5 A full internal sub-category is said to be a full internal relatively cartesian
closed sub-category tf the comprehension category in its definition (Definition 5.3.8) (i.e. the

wternal global scctions functor) is a closed comprehension category.

This definition, intuitively amounts to requiring that the sub-category internally represented
by the internal category is relatively cartesian closed (actually, with strong sums). We shall
see the utility of this definition in the succeeding chapters. In the sequel, we would encounter
and be interested in full internal sub-categories that are internally relatively cartesian closed

with respect to some sub-category of the ambient category. The precise definition of this is

as follows.

Definition 5.3.6 A full internal sub-category M of a calegory E is said to be a full internal
relatwely cartesian closed sub-calegory relative to a sub-catcyory B of E if the functor LH(M)o
® shown in Figure 5-6 is a closed comprehension calegory (which preserves fibered terminal

objects 1f any), and such that the Jollowing conditions hold.

1. M is an nlernal category in B (and thus, n E);
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rpM) TeM)  [IM)  p-
__] E

[M]p Mg
cod

B t E
Figure 5-6: Relative closure.

2. The square indicated (where 1 is the inclusion functor) is a change-of-base situation.

The externalizations have been subscripted with the names of the respective categories. Note
that according to the assumptions of the definition, [[(M) is a full comprehension category,
preserving terminal objects if any®.

In the last part of this section we shall develop further the theme of the complementarity
between the fibered and internal ways of looking at variable categories. We shall see that if
a fibration has a “small set of objects” relative to the base, (in the sense of having a generic
object, as defined in the previous chapter) and furthermore, if it is locally small, then it is
equivalent to the externalization of an internal category in the base. We have the following
important thecorem, a version of which is proved as [40, Theorem 4.5.7]; in our case, we

assume only a display map structure in the base, rather than requiring all pullbacks.

Theorem 5.3.7 Let p : E — B be a locally small fibration; further, let B be a display
map category, with the class of display maps closed under composition, and such that the
representing arrows for the fiber-wise hom-sets are display maps; finally let the first projections
Jrom cartesian products also be display maps; then, every object E € E determines an internal
category (which we denote by VE), together with a full and faithful cartesian functor from
the externalization [E] : Y (VE) > B to p: E — B.

Proof: We shall refer to Figure 5-7. Let us see how we get our internal category first.
The object of objects, which we shall denote as o is simply pl. Vor the object of
morphisms, we have the following construction: consider the re-indexings of E along

the cartesian projections my, 15 : 20 X o — §lo; that is, 73(E) and 7}( E) respectively.

*We may also note that being a full internal sub-category of some full sub-category does r.wl entail that it
is onc of the embedding category: hence the condition has to be additionally impoged One simple reason for
this is that the terminal objects of the latter and the former may not in general coincide; but even this is not
a sufficient condition.
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These objects are in the liber Eqoxg,, and we have the representing arrow (given by
local smallness) 7g : [r(E), 7](E)] — Qo x Q. We shall claim that this is our object
of morphisms @;. To sce this, let us construct the other components of the internal
category.

The internal domain and codomain morphisms are straightforward—namely: 8 =

moo g and &) = m o g respectively.

Let us write A : §o — $2o X Qo for the diagonal arrow. We note that xgy 0 A = idg,
(where my; is either 7o or ;). Hence, A* o ng, = (mop 0 A)* ¥ idp, & idg,, - Hence
idg : E — E can be thought of as isomorphic to an arrow (which we shall denote also
as idg) idg : A*(n§(E)) — A*(7}(E)). Hence, by virtue of local smallness we have an
(unique) arrow idg : Qo —~ [x3(E), ®;(E)}, such that i/d;‘(n,;) = idg (where kg is the
generic map 75(n3(E)) — 7g(73(E)) in the fiber over [x5(E), 77(E)])—which gives us
the internal identity.

For the composition, we shall require the closure of display maps under arbitrary pull-
backs. We show the construction in the lower diagram of Figure 5-7. We denote by
7g(L) W xj(L), the pullback object of the pullback of mgo 7g : [rg(£), 73 (E)] — Sk
over my o 7 : [14(E),7}(E)] — Q. By our assumptions, both 75 and mp are display
maps, and so is their composition; hence the pullback exists and is a display map. Now
we also have the pullback of mg : §o x Qo — Qo over 7, : 0o x o — $2o; we denote this
pullback object as §2g M §2g, and the (pullback) projections as p and ¢, as shown in the
figure. We have the obvious mediating morphism r : 7§(E) ¥ 77(E) — o X Qo.
We have the morphism mgop : Qo X Qo — o and Ty 0q : Qo X Qo — Qo
and hence the mediating morphism s = (7o o p,m1 © q) : Qo X Qo — D X No.
We write ¢ = sor, as indicated in the figure. We have, through pullback, ar-
rows m,n : m3(E) X mi(E) — [n§(E), 7(E)) (and of course, corresponding compo-
sitions 7g o m,mp on : m(E) ™ T (E) = Q0o X Qo). The representing properties
of n§(F) ™ =7(E) give us maps m*(xg) : m*rpmg(E) - m*rpni(E), and n*(kg) :
n*rpmg(E) — n*xp7i(E), where kg is the generic map 1gm5(E) — 7pmi(E) in the
fiber over [x§(E), 7} (E)]. We have from our pullback, that (myompom) = (rpompon);
hence we may say that (m*orgomy) = (n* o 7}; 0 mg); hence we may compose and
obtain a map n*(kg) o m*(KE) m*rgry(E) — n*rgri(E). We may also note that
TQOM;0M = WYOPOT = WYOSOT = MOt (putting p = sor: ng(E) X xy (L) — Qo x So)
and that ;yorpon =moqor =M 080T = 7 o llence we have that our map

n(ng) 0 m* (k) is isomorphic to a map op; spt(mg(l)) — pe(ri(1)); and henee, by
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i (E M o(E), 71(E), such
local smallness, we have an unique map op : 73(E) M #3(E) — [ng(E), 7j(E),

that o = e} (kg).

It is intuitively clear, rather tedious and not too illuminating to verify that the structure
VE defined as the 6-tuple (90.91,00,31,@,‘;3), in the base category B, satisfies the
axioms for an internal category. We shall now define a functor E from the externaliza-
tion 3°(VE) to E; its action on objects is as follows:

E (A2 Qo) — X*(E).

Its action on arrows is given by the following construction. As we know, an arrow in
2(VE),say from X : A— Qo to Y : B — Q is of the form (u, f) where u: A — B in
Band f: A = [r§(E),x}(E)] such that dpo f = X and &0 f = Y ou. Now putting
v=mpof: A~ xS, we know that the representing property of [73(L£), 7} (L))
gives us an isomorphism ¢ : B/ x Qp(v,7g) — E (v*(m3(E)),v*(7;(E))); of course
©U) = [2(np) Letus define [ = @(f) @ o*(x5(F)),v*(r7(E)). Now we note the
following: X = o f = myorp o f = mpov; hence X* (v* omg); again You =
dof=morpof =mou; hence, (u"o¥*) (Y ou)* = (v*ox}). Thus we may write
(up to isomorphism of course) that f: X*(E) — u*'Y*(E). Now we have the cartesian
lifting of » namely @(Y*(E)) : u*Y*(E) — Y*(E); then we define the action of E on

Arrows as:
(1) (A 2 Qo] — (B L Q) — [(@(Y*(E))o f) : X*(E) — Y*(E)]

It is quite casy to prove (throngh the isomorphism o, and the nature of this construc-
tion), that we have in FE, a full and faithful functor (sce also [40, Theorem 4.5.7)).

Finally we note, that given a morphism u : A — B in B, and an object Y : B —
in the fiber of [E] over B3, we have that the resindexing w*(Y) = ¥ o w: the cartesian
lifting of w at Y is i()) = (widg oY o u). Obviously, the domain of this lifting is
the object ¥ o u which is in the fiber over A. Let us sce the image of this under the
functor I: as stated above, Ji( uY)) = (&(Y*(E)) o f), where [ = lld-E oY out. Now
£ has been defined as o(f) = [*(h1); hence we have that f = (1(]7 oY ou)(ky)
w(Y*(idg (k) = w(Y*(idg)) = id(yroye)(E) (by functoriality). We have used the
fact that i(E;.(xlq) =idp;® Heuee we have that l;'(u()’)) = (i(Y*(E))o f) = W(Y*(E)),

ing of u with respect to the fibration p, while the

mam of f are appropriate (i.c  both are u*(Y*(E)), up to
F)) = (tuoxgoiaoYou)’;
£)) 2 u*(Y*(E)); again since moxgoids = idg,
)
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which is obviously cartesian. Hence the proposition.

Theorem 5.3.8 On the assumptions of Theorem 5.3.7, if the locally small fibration p: E —
B has a generic object, then it is a small fibration.

Proof: Let us denote the generic object as A, in the fiber over pA = Q5. We construct
the internal category VA as in the proof of Theorem 5.3.7. The claim is that there
is a categorical equivalence }°(VA) & E. We have already seen the construction of
the full, faithful and cartesian functor A : Y(VA) — E; let us construct a functor
K : B = Y (VA). Since A is a generic object, for all E € E, we have a cartesian map

E : E — A (we assume that a choice of this map is implicit). Then the action of Kis

as follows:

On objects: E — p(E)
On morphisms: E Lp— »f11)

where [f] is defined as follows. We have arrows pf,pfopj : pF — Q, hence an arrow
(pf,pE_opf) : pF — Qo x Qo; obviously mg o (pF,pE o pf) = pF and my o (pF,pE o
pf) = pE o pf. Hence, we have that (pF,pE o pf)*(m3(A)) (pF)*(A) = F and
(pF,pE o pf)*(ri(A)) ¥ (p/)"((PE)"(A)) = (p/)"(E). Now by the cartesian property
of the arrow pf(E) : (pf)"(E) — E, we have an arrow f': F — (pf)(E) such
that f = pf(E)o f'. As we have seen, we may write, up to isomorphism, that f' :
(pF,pEopf) (m§(A)) — (pF,pE opf)*(r3(A)); hence this gives us, by local smaliness,
an arrow [f]: pf = [ra(A), 7 (A)]

It is straightforward to verify that the pair (A,;\) forms an equivalence; and hence the

proposition.

We have, on the other hand, that small fibrations are locally small and have a generic

object. The proof is easy and we sketch it below.

Theorem 5.3.9 Every small fibration is locally small and with a generic object.

Proof: We refer to Figure 5-8. Consider the externalization [C] : £.(C) — B of an internal
category C in B. For arbitrary objects X, X' : A — Co in the fiber over A, the
representing object for the fiber-wise hom-set functor (or the generic family of maps
X — X')is given as the object [X, X') shown in the pullback square in the figure, along

with the projection mo : [X, X'} = A. The generic object for the fibration is simply the

identity idg;, in the fiber over Co.
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(Y, X m C
o (0o, 1)
A (X, X,) Co x Co

Figure 5-8: Small fibrations are locally small.

A particularly simple instance of Theorem 5.3.7 is the construction of the following full
internal sub-category—where in the context of the theorem, p is the codomain fibration

p=cod : B~ — B and with B being locally cartesian closed.

Construction 5.3.10 Starting with any arrow G : A — C B, a locally cartestan closed
category, we may oblain an nternal category Full(G) (that 1s actually a full internal sub-
category) as follows. The object of objects 1s C; the object of morphisms 1s the doman of the
local ezponential m3(G) = m(G), where no,my : CxC — C are the cartesian projections. The
domain map 8 = o o (13(G) = 77((7)) and the codoman map dy = 7y o (73(G) = 7}(G)).

The other components are strarghtforward.

5.4 The CC-Categorical Framework

In this last section, we shall present the full Theory of Constructions, along with a general
categorical model for it, developed by B. Jacobs (140, Chapter 5)), reformulating within the
framework of comprehension categories, an earlier construction of Hyland and Pitts ([38,
Section 2.13]). We shall work within the general context of (Intuitionistic) Type theories,
given in Section 3.1. We have the following two forms of judgements (each having three kinds

of instances), made in contexts endowed with the structure of a poset.

Structural Judgements K, Sekn, s€eA
Equality Judgements K = L, S=Tek, s=teA

For the significance of the meta-variables used in this presentation, we refer the reader to the

conventions stated subsequently. We also have {he general principle of substitution stated in

Definition 3 1.2, along with the nsual rules of equality at all levels, The expressions in the

theory are stratified into two lovels: Orders and Types. Terms at the first level are known
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by €A A=DBelype Sek K=l
seEB Sel
E2 s=t€A A=DBeType S=Tek K=1
s=t€B §S=Tel

o) PEPU q€QIUEeP>T] p=pePll] g=¢€Q['EeP>1]
a(p/€) € Q(p/&) [1"(p/€) > T) a(p/&) = q'(»'/€) € Q(p/E) [T(p/€) > T
gp PEPI KIEeP>1]  p=per(t] K=kKl"(eP>T]

K(p/€) (T"(p/€) > 1) K(p/€) = K'(»'/€) [I"(p/€) > T)
A A € Type 1] K [I]
teAfze A>T XeK[XeKk>T)
W A€ Type[l] J[I">1) K] J[>1]
J(IMzeA>T] JIM,X ek >T]

Table 5.1, Basic Clauses

as Operators while those at the second, simply as Terms. Types are Operators of the Order
Type of all Types. We shall usc the following variable conventions: metavariables k', L, M, ...
would be used for Orders, S,T,U,... for Operators, A, B,C, ... for Types, and s,t,u,... for
Terms. We shall use generic variables P,Q, R,. . to denote expressions that are either Types
or Orders, and p,q,r,... for those that are either Operators or Terms. Operator variables
will be generally taken from the set XY, Z,..., while Term variables from z,y,z,.... The
free variable set of an expression \ will be denoted as FV(x). For general variables, we shall
use the symbols £,9,(,.... The account of the theory is taken from [38]. Table 5.3 gives
the clauses for the closure of Orders indexed over Types, Table 5.2 for the closure of Orders
indexed over Orders, Table 5.4 for the closure of Types indexed over Types, and Table 5.5
for the closure of Types indexed over Orders. We shall label the rules using the following
convention: a typical label for a clanse shail be of the form A/B,X-Y-N where A and B
will be from the set {0, T'} and interpreted as Order or Type respectively; the / symbol
denotes “indexed over” (the A being indexed over B in this context); X will be a symbol from
the st {1,5,11, '} and interpreted respectively as Unit, Sum, Product and Constant; Y
shall be from the set {I, I, E, =} and interpreted respectively as Formation, Introduction,
Elimination and Equality; the number N would be optional and label multiple versions of a
clause. The general dauses for equality, substitution, assumption and weakening (Jabeled as
E, 8§, A, W respectively) are collected together in Table 5.1. We would drop the A/B part

of a label, in the tables below, since the caption on the table would contain that information.
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1-F R o
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oy Sek TeL(S/X) S=S'€K T=T €LS/X)
(STYEZX €KL (STy= (S, TYeLX e K.L
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e Sek TelLS/X) Sek TelLS/X)
= Fsi((S,T)) =S € kK Snd((S,T)) =T € L(S/X)
s VesSX ekl
(Fst(U),Snd(U))=U € £X € K.I
[LF L(X € K,T) K=K[) L=L[X¢€KT)
X € k.L[T] X e kL=1Xeh L[]
I Tel[Xek,I) K=HK'[1] T=Te€L[Xe€K,UI)
AX e KTellX e K.L[I) A eKT=XMXeK'T"ellX € K.L[T)
I-E UVellXe K. Sek U=U'ellXeK.L S§=8¢€k
US € L(S/X) US=U'S"€ L(S/X)
I Sek[l) TelL[Xek,T) UellX € K.L
(AX € K.1)S =T(5/X) € L(S/X)[1] AXUX=UellXekl
eh Type L&) 1)
C-1.2 K[

T(&1, &) € K [1]

Table 5.2: Orders indexed over Orders.
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S-F K[z € AT] A=A"€Type[l] K =K'[z€ AT
Tz AK [T Sz€ AR =Lz e ALK [T]
-1 s€EA  Se Kk(s/z) s=¢'€A S=5€k(s/z)
(s,5) € Bz € A K (s,5)=(s",S") e Tz € AK
SE1 Telze AKX T=T'eZzeAK
fs(T) € A Tsi(T) = fsl(TY € A
SoE-2 Te%ze A!\ o T=T'e€LzeAK
Snd(T) € K(fst(T)/z) Snd(T) = Snd(T") € K(fst(T)/z)
Sel se€A SeKk(s/z) s€A Sek(s/z)
fst((s,S))=s€A Snd((s,S)) = S € K(s/z)
) TeXze AR
(fs(T),Snd(T)) =T € Sz € A.K
[-F KlzeAl A=A €eType[l] K =1K'[z€ ATl
Nz € A.K [T llz € AK =1z € A.K' I
[-1 Sek[ze Al A=A eType[ll] S=85€k[ze ATl
MeASellre ALK AMeAS=XeASellze AK|I)
[-E Tellze AKX s€A T=Tellzec AKX s=38¢€A
i Tse k(s/r) Ts=T's"€ Ik(s/z)
seA[l]  Sek|reAl) Tellze AN
= GeeAsp=Sem) ck(/a) M MTlz=Tecllz€ AKX

Table 5.3: Orders indexed over Types.
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17 € Type
*T € 11
telr
t=*T €17
B e Type [z € AT) A=A"€Type[ll] B=B¢€Typelz € AT
Tz € A.B € Type [l Lz € AB=Xz€ A.B € Type[l)
s€A te B(s/z) s=sd €A t=t¢€B(s/z)
(s,0)eZz € AB (s,t) =(d',t') €Tz € A.B
u€lzeAB u=u'€Xz€AB
fst(u) € A fst(u) = fst(u') € A
w€Lzr€AB u=u'€Zzr e AB
snd(u) € B(fst(u)/z) snd(u) = snd(u') € B(fst(u)/z)
s€A t€ DB(s/z) s€A L€ B(s/z)
fst((s,0))=s€ A snd({s,t)) =t € B(s/z)

uelreAB
(fst(u),snd(u)) =u € Lz € A.B

B € Typez e AT A=A"e€Typell] B=B €Typelz € AT
Iz € AB e Type 1] liz€ AB =iz € A1 € Type 1]
te BlzeAT) A=A e€Typell)] t=t€Bze ATl
AzeAtellze AB[I MeAt=leAtellze AB[I
uellze AB seA u=uvellzeAB s=d¢€cd
us € B(s/z) us = u's' € B(s/z)
s€A[ll teBlzeAl) u€llze AB
(Az € A.t)s = t(s/z) € B(s/z) [T Mauz=uellz € AB
All]

Sz, ) € AN

Table 5.4: Types indexed over Types.
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S-F A€ Type X € K,T) K=Kl A=A €Type|X € K,T)
LX € K.A € Type [T} LXe€KA=XX € K'A' € Type [T
s Sek seAS/X) S=S€ek s=4¢€AS/X)
(S,9) €eZX e K.A (S,8) = (5" sYeETX eK.A
FE seTX e KA teB((X,z)/z)[z € A,X € K,T)
E(s,(X,z).t) € B(s/z)[)
SE2 s=deLXek Al t=teB((X,2)/z)|z€AXek,T)
E(s,(X,z).t) = E(s',(X,z).t') € B(s/2) T}
o Sek[r] seAS/X)[T] teB((X,z)/z)[z€AX €K,
E((S,8),(X,z).t) = 1(5/X,s/z) € B((S,8)/z) I']
S =2 SELXEKAN] teBzeIX e kAT
E(s,(X,2)1((X,z)/z)) = 1(s/z) € B(s/z) [I]
[1F A€ Type[X € K,1) K=K A=A€TypelX € K,I)
11X € K.A€ Type[T) X € K.A=11X € K" A' € Type I
1 se€AlX e k,T] K=K'[[] s=s€A[X€K,T)
M eRsellX e KA M ehs=XXel'sdellX € K.A[I)
[1-B tellXe KA Sek t=t'elliXeKA S§=8¢€ckK
: 1§ € A(S/X) 1S =1'8" € A(S/X)
- SeK([) seAlXek,T) tellX ek.A
(AX € K.5)S = s(S/X) € A(S/X) I MiX=tellXek.A

Table 5.5: Types indexed over Orders.
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The assumption and weakening clauses have the restriction that z and X do not appear
in T or in I'. As we can see, the elimination clauses for the sums of Types over Orders
are formulated in the Martin-Lof style, 'using the elimination constant E. This is due to a
syntactic constraint which does not allow the projection constant Fst to be defined. The
basic categorical model for this theory was given by Hyland and Pitts in [38]. The model,
and its underlying logic was presented partially in Chapter 3; the system considered at that
time was simply the system of Types indext;d over themselves (corresponding to the clauses
in Table 5.4). The categorical model for the complete system is a generalization of the
carlier structure, which was a relatively cartesian closed category. In this generalization,
we need two classes of display maps—representing the (dependent) Types and Orders. The
indexing of Orders over Types allows, for any Type A, the formation of the Order Xz : A.1p:
hence, we may model this by requiring that the display maps for Types be contained in that
for Orders. Since Display map categories are more elegantly formulated as Comprehension
Categories (as we have described in Chapter 4), we shall model the theory in a system of
Comprehension Categories. There are essentially two other significant points we have to take
care of. First, the fact that we have an Order T'ype whose Operators are all Types, requires
that we model the free Type variable (i.e. X € Type); this is done by requiring the fibration
(corresponding to the Comprehension category for Types) have a generic object. Second,
the rules for the sum of Types indexed over Orders needs some care: they are quite strong
(in a technical sense too) and inadequate care in modeling them would lead us to a version
Girard’s Paradox; specifically, in categorical models modeling strong sums, sums are usually
given by composition (with the morphism underlying the substitution functor); in this case,
while sums would still be given as left adjoints to the substitution functor, the incapacity
to define the projection constant F'st, does not permit us to model the situation through
composition any more; yet, the sums remain strong of course: the problem is handled then,
by requiring that the inclusion of the (fibration of) Types into the (fibration of) Orders, have
a (libered) lcft adjoint; this, along with the requirement that we have strong sums in Types,
give us a model for the strong sums of Orders indexed over Types. The resulting categorical
structure is described in [40]—where it is called a CC-Category—and we reproduce it in
Definition 5.4.1 below.

Definition 5.4.1 A CC-Category is the structure shown m Figure 5-9, and with the follow-

ing conditions on the constituents.
1. Q 1s a closcd comprehension calegory.

2. I is a full and farthful functor, and P = Qo T is a closed comprehension category;
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T
E D, Q B
\Y
P 9 cod
B

Figure 5-9: The CC-Category.

moreover, I is a morphism from the fibration p = cod o P to ¢ = cod o Q; hence, it is

a full, faithful and cartesian functor.
3. T has a fibered left adjoint V.

4. There 15 an object @ € D such that ¢Q is terminal, and p has a generic object above
Q2.

It is fairly straightforward to verify that this structure is indeed a model for the theory
of Constructions. We may remark that the left adjoint V endows P with Q-sums (and
products); on the other hand, Q has P-sums (and products) through Z. Both classes of sums
are strong, and we can see that all the clauses in the theory are appropriately modeled. In
particular, Theorem 4.2.15 entails, in this context, that p is a locally small fibration, and
thus (from Theorem 5.3.8) that it is a small fibration (see below for precise statements);
this allows us to model the Order Type, and the rest of the structure gives us impredicative

products over Types. We may summarize the relevant entailments of Definition 5.4.1.

Proposition 5.4.2 ([40, Proposition 5.2.7]) In the contezt of Definition 5.4.1, we have the

Jollowing proposilions.
1. The fibration p is a fibered cartesian closed category.
2. The fibration p ts a small fibration.

3. If the functor P = QT is the (internal) global sections functor for the internal category
gtven on the basis of ltem 2 above, then the latter is a full internal relatively cartesian

closed sub-category (in B).

Proof: ltem 1 follows from ‘Theorem 4.2.13. From Theorem 4.2.15 (and the previous item)

we have that p is locally small; we also know (from Proposition 4.2.6) that B is a
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display map category, and we can verify that the various pullbacks needed in the proofs
of Theorems 5.3.7 and 5.3.8 exist in B—which entails Item 2. Finally, Item 3 follows
from Definition 5.3.5.

Remark 5.4.3 Wc should remark that, in close analogy to Theorem $.1.5 of Chapter 3,
whach asserted the (bi-) calegorical equivalence between the category of Martin-Lof Type the-
ories and that of relatively cartesian closed cutegories, we may demonstrate one between the
category of CC-categories (appropriately defined) and that of the theories of constructions
(agatn, with an appropriate notion of morphisms). The arguments are a siraightforward gen-
cralization of those for the carlier theorem and we do not labour the details. The interested
reader may consult the reference ([38, §2.13]) where the argument is indicated, though in
terms of the display map formulation rather than in those of a CC-Category; the adaptation
1o to the latter requires minor and systematic alterations which can be easily carried out on
the basis of Propositions 4.2.2 and 4.2.6 of Chapter 4.

We shall invoke this result implicitly in the next chapter, where we would induce a theory
of constructions on the basis of a concrete instance of a CC-Category; the latter is essentially
the relatively cartesian closed structure § in Chapter 3, extended into an impredicative

theory, and cast in the current framework of Comprehension categories.



Chapter 6
The Theory of Constructions

In Section 3.2 we have seen the construction of the category 3, which was a model for a
calculus of dependent Types. In this section, we shall see if we can extend our framework so as
to capture impredicative features, and thus model the whole of the Theory of Constructions.
The fundamental difficulty is to model an Order of all Types in the system: syntactically,
this amounts to modeling a free Type variable. The basic strategy is to take advantage of
the fact that in our construction of S, every Type was presented through an expression of
the language Ao: hence, we may form an object consisting of all these terms (appropriately
quotiented), which then becomes an object of the names of all the Types in the system. Of
course, this is not a Type itself; hence, we have to have a level of Orders besides the Types,
and then see if this level is closed under the usual forms of quantification. As was the case
for &, every Type and Order in the system, is presented through (the equivalence class of)
a certain syntactic expression—of a language that extends the language Ao of Chapter 3.
The constructions are carried out within the framework developed in the last two chapters—
namely fibered category theory, and specifically, Comprehension categories. The resulting
structure would be seen to be what has been described in the last chapter as a CC-Category.
In this structure, the category of Types could be conceptualized as a full internal sub-category
within the base category of the CC-Category, and admitting the kind of completeness needed
to model the theory of Constructions (CC-Completeness, as we have informally termed it).
Thus, the first part of our program for a “Constructive semantics of the A-Calculus”—in
which we induce (nnder the rules of dependency and quantification) a full constructive Type

theory on the basis of the Types (of proof-objects) of the pure terms—is substantiated.
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6.1 The Syntax

We initiate the constructions by defining a calculus of terms and operators, which can be
seen to extend the Ial;guage A of Chapter 3. We shall re-use some of the symbols from
that chapter, since they would be interpreted only in the current context. We should note
that the next few definitions are not to be considered as independent of each other, but as
sub-definitions of a single definition of the class (names) of Types and Orders, which we
shall denote as ©0; the definition being inductive, should be interpreted as the smallest set of
expressions satisfying it. We define below, a language that would consist of all the expressions

that make up the names of the Types and Orders.

Definition 8.1.1 Let us fiz a set of varwables U, and a suitably large set of (constant) typed
function symbols x: each function symbol F has a lype consisting of a pair of ezpressions
n OO, the first component of which would be denoted as dom(F) and the second as cod(F)
(a more precise qualification of the size of the set x would be made subsequently). Thus, a
typical element of x would be denoted as F : (dom(F),cod(F)), though we would suppress
the type of F whenever this information is unnecessary. The symbol A would denote the class
of A-terms generated from U. The substitution operator would be denoted as -(-/-), and the

pairing operalor as (-,-). The language A' is defined inductively by the following rules.
1.ACKN
2 lo,TeN
3 Lz:a.f€eN, fora,feN, zel
4. Nz:apeN, fora,feEN,2€D
5. a(F(B)/z) € N, for F € x, a,3 € N', z free 1n a (see below)
6. (a,B) € N, fora, € N
7. (Fyn), for FE€E x,n € A
8. V(T)e N, for T € A.
We shall use the following convention with respect to Item 6: when both a and 3 are A-terms,
the pairing operator would be identified with the pairing combinator of the A-Calculus; hence,

it would be purely a notational device (unless otherwise indicated). We have in this language,

in addition to the standard (unary) binding operator Az, (binary) binding operators Iz : a.
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and Iz : vy the rules for bound variables are given as in Definition 3.2.3. We shall denote
by A" the class of closed A'-terms.
We shall define on the set of A'-terms, an equivalence relation =, similar to the relation

defined in Definition 3.2.4 and signified by the same symbol.

Definition 6.1.2 For arbitrary A’-terms A, a, we define by A(a/z) the resull of substiluting
the free occurrences of  in A, by a. The equivalence relation ~ on the class of A'-terms is

defined to smallest relation satisfying the following sel of inductive rules:
1. = on the sub-class A C A’ is the relation ~ as defined in Definition $.2.1;

2. Jor A-tevms A, B, we have that A ~ B if and only if there exists a A'-term C with vari-
ables zy,...,z, free, such that A = C(ay/z1,...,an/2s) and B = C(by/z1,...,ba/2p),

Jor N'-terms ay,...,a, and by,...,b,, witha, ~b, for 1 <i< n.

Thus = is the (syntactic) congruence generated by the relation restricted to the subset of
M-terms. The equivalence classes with respect to the relation ~ would be denoted by the |:]
notation as before.

The Orders and Types that constitute our system, would be presented on the basis of
~-cquivalence classes of a sub-class of (closed) A-expressions: the corresponding objects in
the category of I'ypes and Orders would be the denotations of these expressions: the link
between a A™ expression naming a Type (or an Order) and its denotation would be established
through an operation § as in Chapter 3. The classes of expressions constituting the names
of the Types and Orders would be delined in two stages: first, we shall over-generate the
classes, and present, on the basis of the inductive syntax of Definition 6.1.3 below, a system
of expressions that is a proper superset of the actual system of (the names of) the Types and
Orders; in the next stage, we shall prune the system to yield us the valid classes of expressions,
on the basis of the well-delinedness of the denotational operation delined subsequently. The
system of expressions is defined below: they are stratified into sub-classes corresponding to

the Types and Orvders libered over (dependent on) themselves and cach other.

Definition 6.1.3 The strata me gen through the following set of simullaneous inductive

definitions

Types The sct of Type cxpressions 1s denoted by the symbol A, and is composed of the classes

Ag and Ay defined below.
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Basic Types The set of Basic Type ezpressions, Ao, is the smallest set satisfying the

Jollowing conditions.

[z) € Ao where z €A
(B2 :a.B) € Ao where [a], [B] € Ao
Mz :a.0] € Ao where [a], [B] € Ao
[V(T)) € Ao where [T)€ @

Complex Types The set of Complez Type ezpressions, Ay, is given by the following

conditions.

[Ez:¢.a)€ Ay where [¢] € Ay |J®, [a] € Ao
[z : ¢.a] € A1 where [¢] € Ay U<I>, [a] € Ao

Orders The sel of Order ezpressions ® is the smallest set satisfying the following conditions.

{lol,[' e @
[Bz:¢.R]€ & where [¢] € ®|JA,[R]€ &
Nz:p.R€d where [gle | JA, [R)€®

We have, in addition to the rules above, the following set of substitution and transformation
rules; each is applicable to cither of the strata A; or &, for which we use the generic symbol
A.

[Yy: A.B(F(y)/z) € A where [Ez:C.B)€ A, F: (|A},[C))
[Bz: AZy: B.C((z,y)/y)) € A where [Ey:(Zz:A.B).Cl€ A
[Ez: Ally: B.C((z,y)/y)) € A where [Sy:(Zz:A.B).Cl€ A

In the statement of these rules, we use the pairing operator explicitly (cf. remark following
Definition 6.1.1). We shall denote the union AU ® as ©. The restriction of the classes of

the expressions dcfined above to (equivalence classes of ) closed A’-terms would be denoted by

AJ A, 80 respeetively, and A°, and OV,

From the term syntax of A, we have the notion of an occurrence (of a sub-term) in any
term z such that [z] € @g; we shall denote by occ(z) the set of occurrences in , which is
but the domain of = (when z is considered as a tree). The replacement of the sub-term at

7 € vce(r) by some term y would be denoted as x[y)y, and thus, the obvious generalization
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for a set of replacements at a set of occurrences. The sub-term of z at y € occ(z) would be
denoted as z|,.

The (partial) operation § which gives the denotations of the classes of expression in ©°
defined above, and which are the objects in the category of Orders and Types, is defined
below. We have seen, in Chapter 3, that the denotations of the Types are essentially sets of
equivalence classes of A-terms with respect to the relation ~: That would remain to be the
case for the basic Types; for the other classes, they would be sets of equivalence classes of
(a sub-class of) A’-terms, with respect to the ~. We shall embed these sets within a class
of objects that are known in the literature as w-Sets. These are essentially sets, but with
a set of realizers (A-terms) attached to each element. We furnish a (slightly modified; cf.
Remark 6.2.27) definition below, though the salient properties of the category w-Set would

be explored in the next chapter.
Definition 8.1.4 The category w-Set has the following constituents.

Objects: Objects are pairs (X,F) where X is a set and F is a relation in A x X, and such
that Vz € X.3n € A.nF 2. We say that n realizes . We would annotate the relation

as Fx. whenever necessary.

Morphisms: A morphism f : (X,bx) — (Y,by) isa map f : X — Y satisfying the

Jollowing condition:
IJneAVzr e X¥pe M(pkxx = (n-p)ky f(a))

we say that n tracks f (denoted by nt+ f); for any morphism f, we shall denote a code

which tracks it, generically, as f.

The operation § acts on ©° terms to yield objects of the category w-Set: it is defined
relative to an (partial) interpretation (-) (given in advance) of the set x of function symbols as
morphisms of the category. For F : (A, B), we shall stipulate that (F) : § A — § B, whenever
defined. Obviously, not every symbol in the set x need have a well-defined interpretation—for
instance, either of the denotations of domain and co-domain may not be defined; we would
be concerned, in what follows, only with that subset of x that has a valid interpretation—we
would call it the valid subsct, and use the symbol ¥ for it. As mentioned earlier, we shall
qualify the size of the sty as being large enough for every morphism f : $(A] — $(B]
(A, B € ©Y) in w-Set to have some symbol F' € x such that (F) = f.

The rules for the evaluation of the operation § requires that we should consider it as
defined over a class of expressions which is a superset of O": this larger class would be

denoted by the symbol as ©Y4, and is defined below.
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Definition 6.1.5 The class of ezpressions known denoted as ©% are obtained according to

the following rules.
0° c o}
[Sz: A.B] € 0o \ld] € }{[A] = [B(a/z)] € %
The main clauses in the definition of § below, are supplemented by the following substitution
rule for the evaluation of the operation on 03, ezpressions conlaining occurrences of function

symbols from (the valid subset of) x.

o for z containing a sequence 7 = {y1,--,n} C occ(z) of occurrences such that V1 <

i < n.zly, = Fi(p) with F, € x, we have that
Fla)= flul where 3q1 - gu¥1 < i < n.fail = (RNBDAY = alashy -+ gahn
The main clauses in the definition of § on @° expressions are set out below.

Definition 6.1.8 The opcration § yields objects in the category w-Set, with the underlying
sets consisting of certain ~-equivalence classes of terms of a sub-class of A’ expressions. The

definition uses an auzshary operation operation V(-) which is defined subsequently.

flal = /L3y ery=aAbe [4) jorz €
f[):z:a.ﬂ]

{[(a,5)]|[a] € $la], [b] € $[B(a/z)]}
we denote the first projection o : §[Ez : a.f] — §[a] as 78
{{/1IVla] € §[a).3(b] € §[B(a/z).Vn € A.nt[a] = fnt [b]}

for [a), 18] € A

f[u::u./j] - (6.1)
(RN (o) [Ez : apl)) € XATE o F = id A S + F)
otherwise
fliol = (e
f{r] = {l=*)[z) € ASA ){[1] is defined) (6.2)
FIN = (V@I e fi1) ‘ (63)

The operation (-)* in Clause 6.2 is defined as follows:

. {.‘Jy:z.!l ifzeA
T -

T otherwise
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As we can see, the sets in the range of the operation § would in general consist of (equivalence
classes of) terms from a sub-class A'. We define the operation V() on such terms through

the follounng clauses:
1. forz € A\, we have V(z) =z
2. for (z,y), we have V((z,y)) = (V(z), V(y))
3. for all other elements not covered by the clauses above, we have V(z) = Q

It may be easily verified that this defimition covers the relevant class of ezpressions. Finally
we dcfine the realizability relation &, presenling sets in the range of § as w-sets, through the

following clauses:
1. for z € X we have nt [z] & n € [z]

2. n k [(z,y)] & mo(n) F [z] Ami(n) & [y), unless (z,y) € X in which case the previous

clause applies.

3. for all other equivalence classes of terms, not covered by the clauses above, we have
nt[X]enx~Q.

The operator V invoked on the right hand side of Equation 6.3 can be seen to have the
action of replacing every sub-term of its argument that is not a A-term, by the A-term €
it leaves the rest of the term unchanged. As we can see, the operation § is partial on its
domain, and as we have mentioned earlier, we shall prune each of the classes we have defined
in Definition 6.1.3—symbolized by the symbols A3, A, ®° and A° and ©°—to admit only
such expressions for which the operation § is defined. Such classes would be characterized as
valid and in the sequel, we shall use the symbols above, as well as the names Basic Types,
Complex Types, and so on, for only the valid classes of expressions defined and stratified
according to Definition 6.1.3.

We have a couple of simple propositions that follow casily from the definition above.

Proposition 6.1.7 For an Order [¢] € ®°, the map 1y : §[¢] — §1V(¢)) : [2] = [V(z)) is
tracked by the identity A-term 1.

Proof: We shall consider the various classes of expressions that may make up the lt_evel of
Orders. The proposition is trivially true for the classes (10] and [T]: the operator V
yields the Basic Type 2], and the map 7 is tracked by the A-term /5 Now consider

an Order of the form [Yz : ¢.K): by an casy structural induction, any [z) € §[Xz : ¢.R]



100 CHAPTER 6. THE THEORY OF CONSTRUCTIONS

can be seen to have the following property: z is constructed by induction on items 6
and 7 of Definition 6.1.1, and there cxists a set 7 of occurrences of sub-terms in z that
exhausts all sub-terms of z not in the set A; moreover, the definition of the operator V
tells us that ?(x)‘is obtained precisely by replacing all such occurrences of sub-terms
in the set ™ by the A-term 2; now consider the map 7 : [z} — [V(z)] (¢ = Zz : T.R) :
from the way that the operation | is defined, we can see that [z] is realized by A-terms
n such that all the nodes corresponding to the occurrences in the set 7 are nodes in
n too, and are (labeled by) terms in [2]; this condition holds precisely for any realizer
for [¥(z)] too, since exactly those occurrences have been replaced by Q: V(z) agrees
with z at all other occurrences. Hence exactly the same set of A-terms realize both
[z] and [V(z)] and the map 7y in this case can be seen to be tracked by I. A similar
argument works for an Order of the form [IIz : ¢.R]: any object in its denotation is of
the form (I, f), and the operator V acts on it to yield (82, f); both (F, f) and (2, f)
are tracked by the same set of terms (namely [(2, f)]) and thus the map 5, is tracked
by the identity.

Corollary 6.1.8 For any term z such that [z) € Y = §[y], y € O°, we have that the set of
realizers {n|n by [z]} = [V(z)].

Proof: We use exactly the same argument, now extended to all classes of expressions in ©°.

6.2 The Structure

We shall use the syntax of @, and the definition of § to construct the fibrations that instance
the relevant CC-Category. As before, we shall work in the framework of Comprehension

Categories.

Definition 8.2.1 We define the category B to be the following sub-category of the category
w-Set.

Objects: Objects are sets of the form §[¢] for [¢] € O°.
Morphisms: All morphisms in the calegory are w-Set morphisms; they are of two types:

s-morphism: s-morphisms may be defined on the basis of the following clauses:

1. The identity map on any object, tracked by the A-term Az.z = I, is a s-

morphism;
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2. An s-morphisms F : §[Tz:a.f] - §[Ty:7.6] is a w-Set morphism such
that for some s-morphism G : §[a] — §[7) the diagram shown in Figure 6-1

commules.
$[Xz : a.p) F §[Zy : v.6]
(o] G $lv]

Figure 6-1: s-morphisms.

F-morphism: A F-morphism is defined to be a map isomorphic to the projection map

7o : §[Zz : a.f) - $la] : [(a,b)] ~ [a].

We have constructed the objects of B so as to be w-Sets, and we can easily verify that B
is a (non-full) sub-category of the latter, through an embedding we shall denote in the sequel

as 1; we record the fact below.
Proposition 6.2.2 B is a sub-category of w-Sets.

There are, of course, w-Set morphisms which are not present as B morphisms—specifically
morphisms between objects of the form Iz : ¢.1, for which the commutation conditions in
the definition of s-morphism fail. The embedding is thus not full. We may see from this fact
that we have been generous in stipulating the size of the set x: in the sequel, we shall require
only those morphisms in w-Set that are in the image of the embedding ¢, to have a name in
the valid fragment of x.

The category B would be the base of our fibrations.

Definition 6.2.3 The Category ® is composcd of the following classes of entities.

Objects: Objects are families T = {Tx)sco such that there ezists a valid ®0-ezpression

[Sy : ¢'.T) such that ¢ = §[¢'] € B and for each z = e o, I = §(T(a/y)l.

Morphisms: A morphism f': {Tx}zes — {Ry}yey consists of a s-morphism u : ¢ — ¢ in

B, along with a famuly of maps f = {f= : Tz — Ry(z)}res, such that there ezists a
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A-term f (called the realizer for the family) such that any member f; of the family f is
tracked by the A-term fa, for any at .

~

It may be guessed that the category & would represent the fibration for Orders. The corre-

sponding construct for the Types is as follows.
Definition 8.2.4 The Category A is composed of the following classes of entities.

Objects: Objects are families @ = {az}zes Such that there ezists a valid A°-ezpression

[Zy : ¢'.6] such that ¢ = §[¢') € B and for each x = [a] € ¢, ar = f[a(a/y))-

Morphisms: A morphism [’ : {a:}zes — {By)yew consists of a s-morphism u : ¢ — ¢ in
B, along with a family of maps f = {fz : @z = By(z)}ze¢, Such that there ezists a
A-term f (called the realizer of the family) such that any f: is tracked by the term fa,

foranyat z.

We can see that according to the definitions above, any object of —say the family
T= {T’}zeﬂél in Definition 6.2.3, corresponds to an object T of the form §[Sz : ¢.T] € B;
conversely, any object in B of the form §[Ez : ¢.R] with [Ez : ¢.R] an Order expression,
corresponds to an object (R[V]}lv]eflt#] of &, with

Iy = }{ [R(y/z)]

We would refer to this object as Tz : ¢.R; as we can see, every object of ® can be thought of
as given by Tz : ¢.R for some [Ez : ¢.R] € #°. In the sequel, we would be a bit loose, and
refer to any object of $ as an object (of the form) Tz : ¢.T (for suitable T'). Similar remarks
apply to objects of A.

We may define now, the functors that would constitute our Comprehension Category.
Definition 8.2.5 The functor Q : & — B~ is defined to have the following action.
On Objects: The object T = {Tz}zeflél is mapped by Q to the F-morphism mo: T — ¢ in
B—.

On Morphisms: The morphism T = {T=):ef[¢] — R = (R,}veﬂw] consisting of a s-
morphism u : §[¢] — §[s] in B, along with a family of maps [ = {fy : Tx —
Ru(r)}zefw]’ is mappped by Q to the commuting square in B, shown in Figure 6-2.

where the action of the B-morphism f 1s as follows:

T e )] = [(u(a), fa(t))]
where [a] € §[¢] and [t] € Ty
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T=§[Sz:9T) | R=§[Sy: ¢.R)

To o

$4 u ¥l

Figure 6-2: Functor Q on morphisms.
To validate this definition we must show that f is a valid B-morphism—i.e. it has a realizer.
Proposition 8.2.6 The morphism f, as defined above, is a valid B-morphism.

Proof: We may verify that f is tracked by the A-term corresponding to:

Az.((u' 0 mo)(z), (f(mo(2)))(m(2))

where ' tracks u and f is the realizer for the family f.

As is usual in higher-order Type theory, there is an embedding of Types into Orders;
categorically, this corresponds to a full and faithful cartesian functor from the fibration of

Types into that of Orders. This functor would be denoted as Z in our system.

Definition 8.2.7 The functor I : A — & is defined to have the following action on objects

and arrows.
On Objects: Consider an object Xz : ¢.a; the action of I may be defined as follows.

I:%2:¢a—Lz:¢.Xy:a.lo

On Morphisms: Consider a morphism {az}zes = {By}yey in A, given by a s-morphism
u:¢ — 9 in B, along with a family of maps f = {fz 1 0z = Bu(z)}zes- Its image under
T is the & morphism consisting of the s-morphism u along with the Jamily f' = {f.)zeq)
where the effect of any f. may be represented as ((fz © 70),2).

The realizer for the family f' is casily seen to be the A-term corresponding to the combinator

Az.((fz) o m0,9) (where f is the realizer for the family f). Functorial properties may be
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casily verified and we shall not labour the point; cartesian-ness is also easy, and we shall
prove that after the Comprehension Category structures have been verified.

As we had mentioped earlier, an important consideration in (the interpretation of) the
closure of Types under existential quantification over Orders, is the reflection of the fibration
of Orders into that of Types. This requires the existence of a (fibered) left adjoint to the

“inclusion” functor Z.

Definition 6.2.8 The functor V : & — A is defined to have the following action on objects

and arrows.
On Objects: Consider an object Tz : ¢.T'; the action of V on this is

Yz :¢.am Xz :0.V(T)

On Morphisms: The morphism T = {T;}ze4 — R = {Ry} ey consisting of a s-morphism
u:¢ — ¢ in B, along with a family of maps f = {fz : Tx = Ry(z)}ze¢, 18 mappped by
V to the A morphism consisting of the s-morphism u : ¢ — 3, and the family of maps
V(f) = {V(e) : V(T2) = V(Rugey) : [V(@)] = [T(b)]}seq, where la] € Ty, [b] € Rugey,
and f; : [a] — [b].

We have to verify that this definition is valid.

Proposition 8.2.9 The functor V as defined above is a valid functor.

Proof: Since T; and R,(;) are both valid (basic) Orders, for any = € ¢, we shall argue for
general [T],(R] € ®° and a ®-morphism F : §[T] — §[R] (i.e. F and its domain and
co-domain are in the fiber over the terminal object §[1p]; no generality is lost in this
move). As we have seen, the action of V on F is the A-morphism V(F) : §[V(T)] —
$IV(R)) : [V(z)) — [V(y)] where F : [z] — [y). We claim that this is well-defined, i.e.
for any [V(z)] € §[V(T)] there is an unique [V(y)] in §[V(R)] satisfying the condition
that F': [z] — [y]. Note that this obtains immediately if §[1'] 2 §[V(T)]—for then for
any [V(z)] we have an unique [z] such that g7 : (z] — [V(2)] (¢f. Proposition 6.1.7), and
hence we shall have an unique [V(y)] such that F : [z] — [y]. Now suppose this is not so:
i.e. we have distinct [z],[2'] € §[T] such that [V(z)] = [V(z')). Suppose F([z]) = [y}
and F([z']) = [¢']. From Corollary 6.1.8 we have that {n|n F [z]} = [V(z)]; hence
{n|nt [z]} = {n|n F [z']}. But the set {m|m F [y]} = [fn] where f tracks F, and
n € [V(z)). Hence {m|mF+ [y]} = {m]mn F [¢']} both being [fn] for some n € [V(z)];
but {m|m ¥ [y]} = [V(y)] (by Corollary 6.1.8); hence [V(y)] = [V(y')]. Hence we have
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an unique [V(y)] satislying our condition even in this case. The only other condition
we have to chieck is that the family V() in the context of our definition, has a realizer.
This follows easily from the consideration that both [z] and [V(z)] are tracked by the
same class of A-terms and thus each V(f.) is tracked by the same A-term that tracks

J=. Nence the realizer for V(f) is the same as that for f.
We may now establish the basic facts about the structures that we have defined.
Lemma 6.2.10 Let P = QoZ: thenp= codo P is a fibration.

Proof: Consider an object o' = Tz :¢.a in A, and any morphism v : ¥ — ¢ in B.
The cartesian lifting of u at o' may be constructed thus: consider the pullback of

mo : §|Zz : ¢.a] — §[¢] along u shown in Figure 6-3 where y does not occur free in

2y : pa(U(y)/z)] v f(Xz : ¢.a]
To To
0 u flel

Figure 6-3: Cartesian lifting of u.

a. Let U be the symbol in the set of valid function symbols ¥ such that (U) = u.
The term Ly : $.a(U(y)/z) is a valid Type expression and the corresponding family
Ly : Y.a(U(y)/z), an object of A. Morcover, reasoning as in the category of Sets shows
us that this square is indced a pullback cone. The morphism v is essentially the identity
Q-definable map I, and the corresponding morphism in A consists of the s-morphism
v along with the constant family {I;}:e¢, realized by the term Av.J (I being the stan-
dard identity combinator); universal properties of the pullback cone yields that this is

a cartesian map—and hence, the cartesian lifting of « at o',

In the sequel, we shall confuse (the name of) a B morphism with the symbol in the set x
which is assigned the former by the interpretation function (). This convention shall extend
to combinations of B-morphisms built up by composition (indicated by the symbol o), and

other categorical operations (on morphisms)—such as pairing, for which we shall use the
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symbol (-,-). We shall freely mix the functional notation with a combinatory notation—for
instance, the composition combinator would also be denoted as o: the meaning would be
clear form the context. We shall also use the symbols %o and 7, generically for cartesian
projections, projections constituting a pullback cone, and also for the projection combinator
in the A-Calculus. It should be remarked that such overloading of symbols is motivated: in
all such cases, the A-term tracking the corresponding morphism would be constituted (as
a combinator) exactly as the expression f.or the morphism built up as indicated above—a
standard aspect of the correspondence between cartesian closed categories and the typed
A-calculi ([44, 14]).

Lemma 6.2.11 We have the following implication:
f cartesian in A = P(f) s a pullback in B.

Proof: Consider objects @ = Lz :¢.a and § = Ey: 9.0 in A, and a cartesian morphism
f : a — B, consisting of a s-morphism u : §[¢] — §[¢], and a family {fz : oz —

ﬂ"(’)}zef[osl' As stated in Definition 6.2.5, the image of f under P is (isomorphic

to) the commuting square in B, shown in Figure 6-4. Now the assumption that f is

$[Ez : ¢.q] / $[Zy : .6]
mo o
#14] u $lvl

Figure 6-4: P f is a pullback in B.

cartesian, entails that any other morphism g : £z : ¢.y — S “over u,” factors through
f through an unique morphism g/ f over the identity idg. Then ( dom o P)(g/ f) is the
mediating morphism, and we have the universal property of the square.

The last two results tell us that P is a Comprehension Category.

Theorem 6.2.12 P is a full comprehension category with unit.

Proof: From Lemma 6.2.10 and Lemma 6.2.11 we have that P is a Comprehension Category.

It is easily seen to be full: for objects @ = Lz.:¢.c and § = Zy: 9.0 in A, any
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morphism f : P(a) — P(B) in B™ would be a commuting square of the form shown
in Figure 6-4, where f, u are now arbitrary B morphisms. There exists a morphism
f in A corresponding to (f,u), that consists of the s-morphism u, and the family
{f’}zeflélv such that any f; in the family is tracked by the A-term corresponding
to Av.my o (f(V(a),v)), where f tracks f, and z = [a]. The defining property of s-
morphisms (cf. Definition 6.2.1) tells us that this is a valid A morphism: the realizer
for the family can be scen to be Auv.my o (f(i,v)).

The fibration p = cod o P has a fibered terminal object: for any object §[#] € B, the
terminal object in the fiber over §(#] can be seen to be the object Tz : ¢.Q. Note that
when ¢ € Ag, we have the object Tz : ¢.z = Tz : .2, which may also be taken to be
the terminal object. The terminal object functor 1, : B — A : §[¢] = Sz : ¢.0 and

can be verified to be a right adjoint to Py = dom o P. Hence the proposition.

The proofs of the Lemma 6.2.10 through Theorem 6.2.12 can be seen to be generalizable to

the category ®. Hence we may assert the following.
Theorem 6.2.13 The functor Q : & — B~ is a full comprehension category with unit.

Proof: We simply replace, in the proofs of the Lemma 6.2.10 through Theorem 6.2.12, A by
®. All the arguments may be seen to be valid for the latter.

We explore next, the relevant quantificational structure of the Comprehension categories.

Proposition 6.2.14 The Comprehension Category Q has Q-sums.

Proof: This proposition states that for any object T'= Xz : ¢.T € ®, the re-indexing functor
(PT)* has a left adjoint T satisfying the Beck-Chevalley condition. As we have seen
in the proof of Lemma 6.2.10, the re-indexing functor takes an object £z : ¢.R to the
object Sy : (Sz : ¢.T).R(mo(y)/z) (using mo as the name of the morphism PT). We
claim that the left adjoint to (PT)* has the following action

Ly :(Sz:¢.T).R— Sz :¢.Ty: T.R((z,y)/y)

economizing on variables in the substitution as before. Let us see how this comes about.

Consider a $ object given as Xz : ¢.5, and a & morphismn

U:Sy:(Sz:¢.1).0— By :(Sz:4.7).5(mo(y)/2)

over the identity: of course, U is actually a family {Uv}ye_ﬂZI . ¢.T) We assume that
the family is realized by a term u. Now for any [a] € §[¢], the member of the family
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Sy : (Zz : ¢.T).R(mo(y)/z) indexed by [a] is §[Zy : T'(a/z).R((a,y)/y)]: a typical ele-
ment of this is [(b,c)] with [b] € §{T'(a/z)] and [c] € §[R({(a,b)/y)]. On the other hand,
a typical element, of the member-of the family £y : (¥z : ¢.T).R corresponding to an
index [(a,b)] € §[Ez : .T) is [c] € §[R({a,b)/y)] (for the same a,b,c as in the previous
sentence). Now suppose U[(a, MK le] = [s] for [s] € §[S(a/2)): we shall define an
(unique) A morphism U* : £z : ¢.Ey : T.R((z,y)/y) — £z : 4., having the following
action: U, [(b,c)] — [s]. Suppose the realizer for U was the term u: since [(a,b)} is
realized by the set [V((a,b))] = [(V(a), V(b))], we can say that U[(a, ) is tracked by the
term u(V(a), V(b)) = n (say). Then we can see that U, is tracked by the A-term cor-

responding to nom;, and thus the realizer for the family (U*) is the term corresponding
to AyAz.(u(y, mo(2)))(m1(z)). We check the factorization condition through the unit.
Consider the object obtained by re-indexing the object Lz : ¢.Xy : T.R((z,y)/y) along

PT: we shall denote it as X—the precise ®° expression for it is not very important;
we have a & morphism 5: £y: (Zz : ¢.T).R — X, and we may say, of any member of
it, indexed by [(a,b)] € §[Ez : ¢.T], that M(a, b)) * [¢] = [(b,¢)] where all symbols are
interpreted as in the context of their earlier use; the family may be seen to be realized
by the term corresponding to Azy.(m(z),y). We also have the morphism U’ obtained

by re-indexing U* and we can see that its member indexed by [(a,b)] has the following

!
((a,
This family is realized by the term corresponding to Ayz.(u(mo(y), mo(z)))(m1(z)). As

action: U by © [(bye)] — [s] (where, as we had stated earlier U[(a,b)] : [c] = [s]).
we can easily sce, for any [(a,b)] € §[Xz : ¢.T, we have that if U{(a Nk [e] — [s], then
we would have that U[I(a,b)] ©M(a,b)) ¢ [c] = [(b,c)] — [s] and hence the proposition.

We would expect the Beck-Chevalley condition to be satisfied since the operation is
essentially one of composition. We make the reasoning explicit. Consider a cartesian
morphism f : Zz : ¢.R(u(z)/y) — Ly : ¢.K; as we have seen (cf. Lemma 6.2.11), this

may be taken to be the general form of any cartesian morphism. We shall denote the

domain by E and the codomain as E’. we have seen that this may be taken to be
the general form of any cartesian morphism. The image of f under P is the pullback
square (in B) shown in Figure 6-5. We consider an object P = £z : (Zy : ¢.R).S. We
have to show that the canonical natural transformation Lg(Pof)* — (pf)*TE is an

isomorphism. Referring to the figure, the action of (Pof)* on P is the & object

Ba: (82 : ¢ R(w(z)/9)).S({(n 0 o)(a), m())/2)




6.2. THE STRUCTURE

L2:(Zy:9.R).S

$IZz: ¢ R(u(z)/y)]  Pof ) §[Zy: ¥.R)

PE

fl¢] w=pf flv)
Figure 6-5: The Beck-Chevalley Condition.

with the usual conventions'. The action of Lg on this object can be seen to be

Lz : ¢.Ta: Ru(z)/y)-S({(uo mo)(a), mi(a))/2)((z,a)/a)
= Yz:¢.Xa: R(u(z)/y).S((u(z),a)/2)

109

(6.4)

upon simplifying the substitutions. On the other hand, the action of Lgr on P is the

object
Ly:¢.Lz: R.S((y,2)/z)

The action of (pf)* = u* on this is the object

Lz:¢(Yz: RS((y,2)/2))(u(z)]y)
= Zz:¢.5z2: R(u(z)/y).5(u(z),2)/2)

(6.5)

upon simplifying the substitutions. Comparing Equation 6.4 and Equation 6.5, the

proposition follows easily.

‘The proposition that Q has Q-products is entirely analogous. We make the details explicit.

Proposition 8.2.15 The Comprehension Category Q has Q-products.

'ef. Remark after Lemma 6 2 10
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Proof: This proposition states that for any object T' = £z : ¢.T € &, the re-indexing functor
(PT)" has a right adjoint Il satisfying the Beck-Chevalley condition. As we have seen

in the proof of Lemma 6.2.10, the fe-indexing functor has the following action on objects.

Lz :¢.R— Ty : (Tz:¢.T).R(7o(y)/z)

We claim that the right adjoint to this has the following action:

Ly:(Ez:¢.T).R— Sz : ¢.Ily: T.R({z,y)/y)

Let us see how this comes about. Consider a & object given as Xz:¢.5, and a )

morphism
U:Zy:(Zz:¢.1).5(mo(y)/2) = By : (Zz:¢.T).R

over the identity: of course, U is actually a family {Uy}yef[Ez 9.1 We assume that
the family is realized by a term u. Now for any [a] € §[¢], the member of the family
Ny :(Xz: ¢.T).R(mo(y)/z) indexed by [a] is §[Ily : T(a/z).R((a,y)/y)). Now consider
a typical element of the family Iz : ¢.S indexed by [a] € §[¢)—say [d] € §[S(a/2)).
Consider the B-morphism F : §[T(a/z)] — §[Zy: T(a/z).R((a,y)/y)], which has the

following action:

F:[b] ~ [{{a,b}c)] (6.6)

where [¢] = U[(a,b)]([d]) (6.7)

This may be seen to be tracked by the code f = Az.((V(a),z),(u(V(a),z))(V(d))).
It can easily be seen that [(F, f)] € §[lly: T(a/z).R((a,y)/y)). We define a (unique)

morphism
U*:%2:¢.85 = Zz:¢lly: T.R((z,y)/y)

the member of which indexed by [a] € §[¢] has the following action:
Uty : ld] = [(F, )]
the family may be seen to be realized by the A-term corresponding to
Azy.(Q, Az.((2, ), (u(z,z))y))

We have to verify the factorization condition through the co-unit. Consider the object
obtained by re-indexing the object Tz : ¢.Ily : T.R({z,y)/y) along PT: we shall denote
it as X —the precise $° expression for it is not very important; we have a & morphism

¢: X = Zy:(Zz:¢.T).R and we assert of any member of it, indexed by [(a,b)] €
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[z : ¢.7T], that “a, by : [{(F, f)] — [c] where [¢] is as given by Equation 6.7 (for
general [(F, f)] in its domain). The family can be seen to be realized by the term
corresponding to Ayz.my((71(z))(m1(y))). We also have the morphism U’ obtained by
re-indexing U* and we can see that its member indexed by [(a,b)] has the following

action: U[,(a,b)] : [d) = [(F, f)] and the family can be seen to tracked by the term

corresponding to
Azy.(, Az.((mo(2), z), (u(mo(2), ))y))
Composing, we have €i(a, b)) © U(l(a,b)] : [d] — [c] where, in this case, by Equation 6.6,
we have [c] = U[(a,b))([d])' In other words, we have, for every [(a, b)]
“Ua,b) ° Yiga, by * 1 = Uiga, by (1)
and hence we can say that U = ¢o U'.

The Beck-Chevalley condition has to be verified. Consider a cartesian morphism

J:Zz:¢.R(u(z)/y) > Zy:¥.R

for which we denote the domain by E and the codomain as E’. The image of f
under P is the pullback square (in B) shown in Figure 6-5. We consider an object
P = Xz:(Zy:¢.R).5. We have to show that the canonical natural transformation
(pf)*Mgr = Ng(Pof)" is an isomorphism. Referring to the figure, the action of Mg on
P is the object

Ly:¢dlz: R.S((y,2)/2)

The action of (pj)‘-z u* on this is the object

Iz : ¢.(Ilz: R.5((y, 2)/2))(u(z)/y)
= Zzr:¢llz: R(u(z)/y).5(u(z),2)/2) (6.8)

upon simplifying the substitutions. On the other hand, the action of (Pof)* on P is
the & object
La:(Xz: ¢.R(u(z)/y)).-S({(u o mo)(a), mi(a))/2)

The action of Il;; on this object can be seen to be
E J

Dz : ¢.0a : R(u(z)/y).5({(u o m0)(a), m1(a))/2)({z,a)/a)
= Zz:¢.dla: R(u(z)/y).S((u(z),a)/z) (6.9)

upon simplifying the substitutions. Comparing Equation 6.8 and Equation 6.9, the

proposition follows casily.
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Since the left adjoint established in Theorem 6.2.14 is obtained essentially through com-

position (in B), we would expect that the the sums thus yiclded are strong.

Theorem 6.2.16 The Comprehension Category Q has strong Q-sums.

Proof: Let us assume the same context as in the proof of Theorem 6.2.14. We have an object
X = Zy:(Z8z: ¢.T).R; we have the action of the left adjoint L1 (to the re-indexing
functor (PT)*) on X given as the object £z : ¢.Zy : T.R((z,y)/y). Re-indexing this, we
have the object (PT)*E7(X ), and a (cartesian) morphism xx : (PT)*Z7(X) — I(X);
we have the unit of the adjunction nx : X — (PT)*E7(X) and we claim that the image,

under Qp of the composite p = kx o nx is an isomorphism. The family p = {p((a,b)] :
X((a,b)] - (ET(X))lﬂ]}{(a,b)]ef{E: . ¢.T) an be seen to have the following action:
Pi(a,b)) [e] = [(b,c)], where as usual, [c] € §[R({a,b)/y)], [b] € §[T(a/z)] and [a] €
§[¢). The family p is realized by the term corresponding to Ayz.(71(y),z). The image of
this under Qp is given as Qo(p) : §[Ey: (Zz: ¢.T).R] — §[Zz: ¢.Zy: T.R((z,y)/y)],
and has the following action: Qo(p) : [((a,b),c)] — [(a,(b,c))]. It can be seen to be
tracked by the term corresponding to (7 o 7o, (7 o mp,m;)), and is easily seen to be
an isomorphism. Thus, on the basis of the remark following Definition 4.2.11, the

proposition follows.

We can see now that Q is a closed comprehension category.

Theorem 6.2.17 Q is a Closed Comprehension Category.

Proof: We know that B has a terminal object—namely [(2) = [(1p) = {L1}. The sequence
of results Theorem 6.2.13, Theorem 6.2.14, Theorem 6.2.15 and Theorem 6.2.16 then
tells us that Q is a Closed Comprehension Category.

We may note that the sequence of results that lead up to Theorem 6.2.17, may be easily
generalized to the Comprehension Category P: the reader may verify, that the relevant proofs
may be carried out relative to A and the Comprehension Category P, by simply using Type

expressions in the place of Order Expressions. Hence we may assert the following theorem.

Theorem 6.2.18 P is a Closed Comprehension Calegory.

Proof: Straightforward translation of the arguments in the proofs of Theorem 6.2.13, The-
orem 6.2.14, Theorem 6.2.15 and Theorem 6.2.16 in the context of the Comprehension

Category P. The only modification occurs in the proof of Theorem 6.2.15, in the case
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that [Zz : ¢.7) happens to be a Basic Type. In that case, we have:
Fllly : T(a/2).R((a,u)/v)) =
(711¥0) € fIT@/2N 3] € FIR(a,6/n)l¥n € Ant ) = [fn] F [d)

Since this representation differs from the one assumed in the earlier proof, we re-
formulate it as follows. Consider a typical element of the family Tz : .S indexed
by [a] € §[#)—say [d] € §[S(a/z)]. Consider the A-term f = Az.(u(V(a),z))(V(d)): it
can be verified that [f] € §[Ily : T(a/z).R({(a,y)/y)]. We define a (unique) morphism

U*:3z:¢.5 — Sz : 9.1y : T.R((z,y)/y)

the member of which indexed by [a] € §{¢] has the following action:
Ugay # ld] = Pz (u(V(a), 2))(V(d))]

the family may be seen to be realized by the A-term corresponding to Azyz.(u(z,z))y.
We have to verify the factorization condition through the co-unit. Consider the object

obtained by re-indexing the object £z : ¢.11y : 7. R((z,y)/y) along PT: we shall denote

it as X—the precise ®° expression for it is not very important; we have a & morphism
€: X — Zy:(Yz:¢.1).R and we may say, of any member of it, indexed by [(a,b)] €
§[Zz : ¢.T], that “a, b))} [f]+ [c] where [f] € §(Ily : T(a/z).R({a,y)/y)) and fV(b) +
[c] € $[R({a,b)/y)]; this may be verified to be well-defined. The family is realized by
the term corresponding to Ayz.z(m;(y)). We also have the morphism U’ obtained by re-
indexing U* and we can sce that its member indexed by [(a,b)] has the following action:
Ull(a,b)] : [d] = [Az.(u(V(e),z))(V(d))), and the family can be seen to tracked by the
term corresponding to Azyz.(u(mo(z),z))y. Composing, we have €(a, b)) ° U[I(a,b)l :
(d] — [c] where (Az.((¥(a), 2))(V(d))(T(B) F [¢] or (u(V(a), ¥(5)))(V(d))  [c]; but
(u(V(a), V(b)) tracks Up,): hence (w(V(a), V(b)))(V(d)) + Upa)([d]) or [d] — Upay([d])

and hence we can say that U = eo U’. Hence the proposition.
We claim now that the fibration p has a generic object.

Theorem 6.2.19 Therc is an object {ﬂr]}reﬂlo] in & such that q({f[l‘]}:efllo]) = §[1o]
terminal in B, Qo({f[rl}zeﬂlo]) = §[I'], and such that the object {f[z]}ref[r] € A is generic
for the fibration p.

Proof: Consider any object A = £z :¢.a in A, in the fiber over ¢; and consider the map
A : §[¢] — §[T) given as follows:

A:a) - [a*(a/2)]
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where o* is as defined in Definition 6.1.6, and [a] € §[#]. This map is tracked by the
term Az.Q. The cartesian lifting of Ais A: A — {f["’”zefll‘] given by the s-morphism
A, and the family /ih] : §la(a/z)] — $[a*(a/z)), which maps [b] € f[a(a/z)] either to
[6] or to [(b,92)] in its co-domain depending on which of the clauses in the definition of
a* applies. The realizer for the family is similarly I or (I, Q) respectively (I being the

Identity combinator).

This is an all-important result and gives us the means to represent an Order of all Types—
or equivalently, model the free Type variable. If in addition we may prove that the Compre-
hension Category P has Q-sums and Q products, then we have the closure of Types under
impredicative forms of quantification over Orders. We shall do this by establishing that the
functor V is a fibered left adjoint to the functor Z. Then, the construction of the relevant
Q-sums and products may simply be done by embedding the Types into the Orders, taking
the sums or products in the latter, and then reflecting them back into the former through V.

Let us establish the facts about V.

Proposition 8.2.20 The functor V is cartesian.

Proof: Consider a cartesian morphism f in : as we have seen in the proof of Lemma 6.2.11,
f may be taken to begiven as f : £z : ¢.R(u(z)/y) — Ly : ¢.R, for suitable Ly : y.R, ¢
and u : §[¢] — §[¥). The image of f under V is V(f) : £z : ¢.V(R(u(z)/y)) —

Ty : 9.V(R) and we can easily see that this is cartesian in A, from the following simple

fact:
Lz : ¢.V(R(u(z)/y)) = Tz : ¢.(V(R))(u(z)/y)
the left hand side representing the re-indexing of £y : ¥.V(R) along u.

Proposition 6.2.21 The functor I 1s cariesian.

Proof: The result is straightforward: the action of Z on any object essentially is to “pair”
every element with the symbol . The result is isomorphic to the original object.
Hence, pullback properties of the image of cartesian maps, are conserved. We do not

labour the details, which are quite straightforward.

We have the main result.

Theorem 6.2.22 The functor V is the fibered left adjoint to the functor I.

Proof: We consider the following data, sketched in Figure 6-6: an object £z : ¢.T € &,
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Figure 6-6: The Adjunction.

an object Sy : p.a € A (we shall denote the former as 77, and the latter as a’), and
a morphism U : T' — I(a'), consisting of the s-morphism v : ¢ — %, and a family
of morphisms [ = {fr}zef['t:]' Consider any [a] € §[¢], and a typical element [z]
in the member of the family 7’ indexed by [a] (i.e. [z] € §[T(a/z)]). Suppose we
have that Uy : [2z] — [(3,0)] where [y] € §[a(b/y)] and v([a]) = [b]. We define a A
morphism U*, consisting of the s-morphism v, and a family {Ul-n])l'-lefl'l'l; the member
indexed by {a] has the following action: U, : [V(z)] — ly] where, as assumed before
Upa) : [z] = [{y,2)]. The argument sketched in the proof of Proposition 6.2.9, along with
the fact that y = V(y) (since o' is in A), tells us that this map is well-defined and unique.
We can see that the family U* is realized by the term corresponding to mp o u where u
realizes U. We check the factorization through the unit n7+: consider any member of the
family nr—say indexed by [a]; we have that (777)[) : [2] = [(V(z), R)], while for the
corresponding member of the family ZU* we have that (ZU* ) : (V(z), )] ~ [(y, D)];
hence (ZU* o 7)) : [2] = [(v, )] and we have that U = IU* ony.

We may thus assert the main result of this chapter.
Theorem 6.2.23 The structure set up in the Definitions 6.2.1-6.2.8 is a CC-Category.

Proof: This follows from the scquence of results Theorem 6.2.17, Lemma 6.2.10, Theo-

rem 6.2.22 and Theorem 6.2.19, and the Theorem 6.2.18.

Remark 6.2.24 As we have staled in Proposition 5.4.2, this fact yield scveral unportant

entailments. We have from Item 1 (of Proposition 5.4.2) that p represents a fibered cartesian
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closed category; also that it is locally small. Item 2 tells us that it is small, and from the
constructions, that it is (isomorphic to) the ezternalization of an internal category (in B)
whose object of objects is §[T'). We shall signify this internal category as A. We may check, as
concrete instances of the assumptions of Theorems 5.3.7 and 5.3.8, that representing arrows
for the fiber-wise hom-sets are given as (images of, under the appropriate comprehension
category) local exponentials, and these are display maps; so are the first projections. We may
conclude, on the basis of Item 3, that that A is a full internal sub-category of B—provided,
of course, that P is the (internal) global sections functor. This is not difficult to verify, and
we do that below.

Proposition 8.2.25 The functor P is the internal global sections functor for the internal

category A; thus it is a full internal sub-category of B.

Proof: Using the cquivalence between A and the externalization Y°(A), we can sce that the
image under P of any object A = Tz : ¢.a in A (which corresponds to the morphism A :
${¢] — $[T), using the notation of the proof of Theorem 6.2.19—and thus, to an object
of the externalization 3_(A) in the fiber over §[¢]), is the object mo : §[Ez : d.a] —
$l#] in B™, and this can be scen to be the pullback of the generic morphism mg :
§[Ez : T.z] — §[I] along the map A. This is exactly the action of the internal global
sections functor on objects. On the other hand, a morphism in the fiber over §[¢]—say
f:Xz:¢.a — Xr: ¢.f—consists (essentially) of a family {j’}zef[»»] as we have seen.
The action of P on this is the commutative square in B as described in Definition 6.2.5
(with u as the identity). Each morphism f, in the family, is a morphism between
(denotations of ) objects in §[I'] and hence corresponds to [the re-indexing of the generic
family of morphisms in the fiber above the object of maps A, of the internal category
A along] a morphism f’ : §[#] — A,; this morphism can be seen to be tracked by
the A-term Az.nz, where n is the realizer of the family f. It may also be verified
that the generic morphism s (in the context of Figure 5-4) is simply the image of the
generic family of maps (given by local smallness) in the fiber over A, (cf. Figure 5-7)
under the action of Po. It is quite straightforward to verify that f—in the commuting
triangle which is the image of £ under P -is (isomorphic to) the pullback of the generic
morphism s along f’. This is again precisely the action of the internal global sections

functor on morphisms, and hence the proposition.

Finally, we can see from the arguments above, that A is a full internal relatively cartesian

closed sub-category of B.
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Theorem 6.2.28 The internal calegory A is a full internal relatively cartesian closed sub-

category of B.

Proof: We know that the functor P is a closed comprehension category. Hence, from Propo-

sition 6.2.25 above and the definition, the result is immediate.

Remark 8.2.27 Before ending this chapter, we should clarify a point regarding the definition
of the category w-Set given carlier. Normally, the realizers are elements of a combinatory
algebra, usually the (closed) term model of the A-Calculus. In this case, we have taken them
to be A-terms themselves, which is strictly speaking incorrect. However, in the case of our
category B, the set of realizers of any element is a ~-equivalence class of terms, and =
extends the f-equivalence. Hence the slight incorrectness does not make a difference to any

of the arguments. In the next chapler, we shall use the correct defimtion.

This brings the first part of our study to a close. In this part, we have systematically
developed the idea of a Heyting-semantics of A-expressions, in close analogy to that for
propositions. The epitome of this development is the categorical structure that interprets—
and thus instantiates (¢f. Remark 5.4.3)—a full Theory of Constructions. In the next part
of our study, we explore the relationship between this kind of semantics, and the traditional
denotational semantics of the Tarski-Scott persuasion. The guiding idea would still be the
strict analogy with the corresponding situation for propositions. Predictably, this would entail
a move towards Toposes, and intuitionistic logic. Remarkably, we shall see that the nature
of our constructions permit a fairly smooth transition into denotational semantics—internal

to the Topos: currently a rich theoretical ficld of study.



Chapter 7

The Realizability Topos

In the earlier chapters, we have traced the induction, on the basis of the A-Types, of a
structure admitting an interpretation of a (impredicative) theory of dependent Types. This
structure was seen to be an instance of a CC-Category, which means that it carries an
interpretation of, and thus instantiates, a Theory of Constructions. This development marks
the completion of one of the major aims of this thesis: it realizes the program of a Heyting
semantics for programs (A-terms) around the general axis of the Curry-Howard isomorphism.
As we have mentioned in the Introduction, a Heyting semantics is a two-step process: it
is completed by giving a “standard” logical interpretation of the category of Types as an
adequately complete internal category in some non-standard universe of (intuitionistic) sets.
Such interpretations are by now well-known: the small complete category of Modest sets
within the Moggi-llyland Realizability Topos ([33, 34, 36, 61]; we shall describe it in this
chapter), the classifying topos of pre-shcaves over the hyperdoctrine model of the polymorphic
A-Calculus ([62]), the algebraic and the algebraic-localic toposes ([38])—to name a few. In
this dissertation we shall not labour this second step of the process; instead, we shall turn
to the question of the relationship between the constructive semantics developed thus far
and the traditional Tarskian (denotational) semantics (of the terms) , within the general
framework of a non-standard intuitionistic universe. More specifically, we shall display the
process of the construction of (in a sense, canonical) denotations of the terms—as the directed
completions of the Type of their proof objects—within the Realizability Topos in which the
latter is embedded as a full internal sub-category. The resultant class of objects would be
seen (in the next chapter) to be a small category of internal directed-complete partial orders
(dcpos), and having a structure generalizing that of the corresponding object in the case
of propositions. From a logical point of view, this has rich implications: the denotational

domains can be formally regarded as (non-standard) sets with standard function spaces—and
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hence we may reason freely about them in the internal logic. Thus, in a sense we have in
them a rudimentary abstract logic of programs'.

This relationship would be composed and explored within a framework that has gained
considerable significance ever since the endeavor of Scott to conceptualize the domains of
denotations of Programs as (non-standard) Sets with full function spaces ([74])—something
clearly impossible in the classical universe. The idea developed, from Scott, through Pitts
and Hyland ({37, 62, 34, 35]), and to Rosolini ([68]), Phoa ([58]) and a number of other
researchers, that denotations of the Types in programming languages could be formally re-
garded as Sets, if only the constructions were carried out internally within (a categorical
model) of an intuitionistic universe. Such an universe had been known since Lawvere, as an
elementary topos (through an elegant reformulation of the bxisting notion of a Grothendieck
Topos, constructed for entirely different purposes). A significant turn in this history, towards
recursion theory and Computer Science, was Hyland’s construction of the effective topos
([33])—in some sense, the categorical model of the world of constructive mathematics; and
to a great extent, a gencralization of the idea of the interpretation of intuitionistic logic in
terms of the category of sheaves on a locale ([37], as re-formulated by Fourman and Scott as
the notion of an Q-Set ([20]). It was thus, a matter of great significance, when Hyland and
his collaborators announced the discovery of a complete internal category within the effec-
tive topos ([34, 36]): complete in a way as to admit the interpretation of the polymorphic
lambda calculus. This category has since been come to be known as the category of modest
sets—a name suggested by Dana Scott originally. In this chapter, we shall present some of
the background required to appreciate this history, and embed our earlier constructions in a
suitable way within its framework. In the next chapter, we would take up formally the theme

of denotational semantics internal to the Topos.

7.1 Partial Equivalence Relations

In this section, we shall be presenting some of the material that is well-known in the seman-
tics of impredicative Calculi (for example, System /', and its various extensions), and which
shall serve as a background and motivation for the constructions in which this chapter would
culminate. We shall not pretend to be comprehensive or very rigorous: the interested reader
may consult any of the list of references on this subject that we shall provide in the bibliog-

raphy. The basic material is drawn, with a few alterations, from the excellent discussion by

"We are reminded of a similar attempt by Abramsky to develop a logic of programs as dual structure of
their denotational domains ([2); also [88])
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W. Phoa in [61)].

The Partial Equivalence Relations have been known, in their present form, as a “suffi-
ciently” complete category of objects within the Effective Topos, since the late eighties; the
basic framework had been known eariier, from the works of Kreisel, Girard, Troelstra and
Scott. After the demonstration by Reynolds, that the Polymorphic Lambda Calculus could
not have any Set-theoretic models, it was left to Hyland, Moggi and later, Pitts, to show that
the salient constructions of a Sct-theoretic interpretation could be carried out in a formal uni-
verse of sets, provided the logic was intuitionistic and not classical. In other words, the kind
of completeness required for interpreting impredicative quantification, could be obtained in a
suitable internal category within a Topos-theoretic model of IZF Set Theory. An instance of
such an internal category turns out to be the (image of the) category of partial equivalence
relations (abbreviated hereafter as PER). But before the arguments are cast in the logic of
the relevant Topos, it is instructive to see how the requisite forms of completeness obtains in
the category of PERs itself. This is the subject of this section.

We shall work on basis of the combinatory algebra A, composed of the closed term model of
the A-Calculus. Hence mention of A-terms in the sequel would generally mean the equivalence
class therecof with respect to the f-cquivalence. We would generally term such a class, as a

code, and confuse terms with their equivalence classes.

Definition 7.1.1 A Partial Equivalence Relation on ) is a symmetric and transitive relation

on A. The domain of such a relation R, is defined as the set
dom(R) = {z € X\|zRz)

For any z € dom(R), we shall write [z]r to denote the equivalence class of z with respect to
the relation R. The set of such equivalence classes would be denoted as =p and is defined
Jormally as stated below.

Zn = {[z]r|z € dom(R)}
The subscripts R may be dropped from the notations if the relation is clear from the context.
We nay construct a category from the class of PERs provided we have a notion of the

morphisms.
Definition 7.1.2 T'hc category PER has the following constituents.
Objects: The objects are Partial Equivalence Relations over ).
Morphisms: For R, S objects of PER, a morphism f : R — S is a map f : Ep = Es
satisfying:
3s € AVz € A.(z € dom(R) = f([z]n) = [s - 2)s) (7.1)



7.1. PARTIAL EQUIVALENCE RELATIONS 121

An element s € X that instances the condition in Equation 7.1, is said to be a code that tracks
the morphism f. We may also define a morphism in PER as the equivalence class of codes

that track the corresponding map, with the equivalence relation (denoted as SR) given by
8(57)s' — Yz € X.(z € dom(R) = s - z(S)s' - z)
and indicate this by [s]: R — §.

The category PER turns out to have strong completeness properties; we record the following
fact for reference.
Theorem 7.1.3 The category PER is locally cartesian closed.

Proof: We shall merely sketch the proof: let us first see how PER is cartesian closed. The
product of PERs R and S, is the PER R x S defined below

8(R x S)t & mo(s)Rmo(t) \ mi(s)Rmy(t)

where mg and m; are the standard A-definable projections. The projection maps R «
R x § — § are tracked by my and m, respectively. The terminal object in PER may
be seen to be the PER 1 defined by: Vs,t € A. s1t.

We can define binary exponents as follows: for objects R, S € PER, we have the PER
S defined by:
dom(S™) = {s € A|s tracks an arrow R — § }

with the equivalence relation defined as stated earlier:
8(SP)s" — Vz € X.(z € dom(R) = s-z(5)s' - z)
The evaluation morphism ev : S% x R — § is tracked by [Az.mo(z)(m1(x))].

As for cartesian closure in the slices, consider the slice PER/S: the terminal object can
be seen to be the identity map ids. Consider now maps [r]: R — S and [t] : T — §:
their binary product is the obvious map R x T — S. Finally, for exponents we shall see
that the construction parallels the construction of a representing object for the maps
over a fiber (in the context of local smallness). For any z € dom(S) we define the fiber

over z as the following PER R, (or T as the case may be).
dom(R;) = {y € domR|[r)(y) =z} yRzz & ylz
We define the PER Q as follows:

dom(Q) = {(z,n)lz € domS, n tracks an arrow R; — T:}
(z,m)T(a" 0"y = zSz' \n(Te)n'
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The first projection @ — S turns out to be the exponential [)7) in the slice.

1t is also easy to see that PER has equalizers. Consider arrows [n],[m]: R — §. We

define the domain of the equalizer as follows:

dom(X) {r € dom(R)|(n-2z)S(m - z)}
Vz,y € dom(X).z(X)y & =z(R)y

and this tells us that PER has finite limits.

We can now turn to the question of how PER may provide a model of the polymorphic
lambda calculus (or System F'). There are two ways in which this might be seen: first, by
establishing the closure of PER under products indexed by its own set of objects; and second
by establishing a suitable fibration p : PER — S equipped with a generic object. We provide
a brief sketch of the first; the second is postponed to the next section.

The basic problem in interpreting System F is to be able to model the impredicative
Types of the form I1.X.F(X) (where X is a Type variable, and F(X) is a Type expression)
and polymorphic abstraction terms of the form AX.Az : X.z, related through the following
introduction and elimination rules.

t:F(X)[z:A,X:Type] f:NX.F(X)[z:A] B:Type
AX1:NX.F(X)[z: A] fB: F(B) |z : A]

As we have seen in an earlier chapter, we could interpret judgements of the form ¢ : F(X) [z :
A, X : Type] as a Type-indexed class of morphisms {f, : A = F(p)}peType—-With the addi-
tional condition perhaps, that the indexing was uniform (in some manner to be explicated)
on T'ype. The problem upon refinement reduces to the following: suppose we interpret our
Types as objects of some category P, and variable Types of the form F(X) [X : Type] were to
be interpreted in the functor category PP, then given an arbitrary functor F(_) : P — P, we
require an object II( F') € P, such that there is a bijective correspondence between the set of
P-indexed set of morphism {f, : A — F(p)},cp and the set of P-morphisms hom(A, II( F))—
for any object A € P. In other words, we require a right adjoint to the diagonal functor
A : P — PP (equivalently, the existence of limits of diagrams of type P). Now while these
general limits might not exist (in the naive or external sense) they do exist (more precisely,
an object with the property of II(F') described above) for a category like PER, provided
the family {f, : A — F(p)},ep satisfies a particular condition: namely, that every member
is tracked by the same code. We may describe such families as uniform. We shall describe
how such “limits” can be constructed below: the key to their existence being that PERs are

closed under arbitrary intersections: : the point to note however, is that such limits do exist
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(in the general sense as the right adjoint to the diagonal functor) when PER is regarded as
an internal category (in some suitable ambient category), and the notions of adjunctions and
etc. are appropriately internalized. We shall remark on this briefly in the sequel, and for an

excellent discussion on this, refer the reader to [34, 36, 48].

Theorem 7.1.4 The category PER has the property, that any diagram F of type PER
has a u-limit TI(F) in PER, by which we mean, that there ezists a right adjoint to the
diagonal functor A : PER — PERPER __ype [aprer category being the category of functors

PER — PER with uniform natural transformations (see below) as morphisms.

Proof: We note that given an arbitrary collection of PERs {R.}se1, we may define their
intersection as follows.

s((Y AL & Vi€ LsAt
1€l

Then given a functor F : PER — PER, we define

W= (| FW)
RePER

which is guaranteed to exist, as we have just scen. Now consider any object A € PER
and an uniform natural transformation ¢ : A(A) — F; this means we have a single
code s tracking every morphism in the PER-indexed collection of morphism {tg: A —
F(R)}repER- This implics that for any z € dom(A), the element s-z € dom(F(R)) for
every R € PER, and this gives us a morphism t*: A — II(F) : [z]4 — [s - z]n(F). The
other part of the bijection is easier: any t* : A — II(F) tracked by the code s, gives us
the uniform family of maps {tr: A — F(R): [z]r — [s-z]r(r)} RePER. i-¢. & (uniform)
natural transformation A(A) — F. By the definition of II( F') as the intersection, the
element sz € dom(F(R)) for every R € PER and hence this morphism in PERPER

is well-defined.

The details of the interpretation of polymorphic Types would appear considerably more
perspicuous when sct out in terms of (suitably) complete fibrations. lHowever, the idea
that polymorphic T'ypes were interpreted in terms of right adjoints to something akin to
a substitution (or re-indexing) functor, and that such right adjoints arc available in PER
through intersections, would still be basic to the treatment.

This interpretation of System F encounters a irremediable difficulty when sought to be
extended to the interpretation of dependent Types. The straightforward intuition would be
that since PER is locally cartesian closed, we could model dependent Types through the

fibration cod : PER™ — PER: this is guarantced to be locally small, and hence adequate
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for the interpretation. However, we immediately encounter the difficulty that this fibration
does not have a generic object. Such a generic object would be something like the set of
all PERs, and while such a set exists, ‘it is not a PER itself. This deficiency rules out the
interpretation of free Type variables, and thus of course, of polymorphic Types. We could
try to circumvent this difficulty through a fibration over a larger category—say SET, which
would interpret the Orders: however, while the standard form of this fibration—namely, as
families of PERs indexed by sets—has a éeneric object, and is suitably complete, it is not
locally small—thus ruling out the possibility of modeling dependent Types. We would then
try to look for an even larger base category, which would have both the properties of local
smallness and the existence of a generic object. It turns out that such a category is available,

and this is the subject of the next section.

7.2 w-Sets

The development of this chapter parallels to some extent that of the preceding part of the
thesis: there, we had initially set up a relatively cartesian closed category which could model
dependent Types; the problem was that this fibration did not possess a generic object. In
syntactic terms, this was taken to mean that we could not have a Type of all Types, and thus
we had to move to a larger category which did have something like an Order of all Types.
We have a similar intuition here: we shall preserve the fact that PER (fibered over itself)
can support dependent Types, and look for a larger category which would have an object
corresponding to the object of all PERs. This has been known in the literature for some
time as the category of w-sets, and contains both PER and SET as full sub-categories. We
have already introduced this category in the previous chapter, and we reiterate the definition

below.
Definition 7.2.1 The category w-Set has the following constituents.

Objects: Objects are pairs (X,F) where X is a sct and  1s a relation in A x X, and such
that Vz € X.3n € A.n F z; we say that n realizes . We would annotate the relation
as F x. whenever necessary.

Morphisms: A morphism f : (X,bx) — (Y,by) is a map f : X — Y satisfying the
Jollowing condition:

InedVze XVpeX(pkxz = (n-p)by f(a))

we say that n tracks f; for any morphism [, we shall denote a code which tracks it,

generically, as f.
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Wae shall use the symbol [0 ¢ V| ta denote the set {nc X|1: by o)l
We would expect that at w-Set would, at the least, have the same kind of closure prop-

ertics as PER. This is so and we sketch the argumnent in the next Theorem.

Theorem 7.2.2 T'he calcgory w-Set is locally cartesian closed.

Proof: The category has the terminal object 1 = (1,+;) where 1 is the singleton set, and
the relation by is defined to be 1 x X (i.e. any code realizes the single element). Given
w-sets X = (X,bx), Y = (Y,ky), their product is the w-set (X x Y,Fxxy) where

(mn) Fxxy (z,y) & mby :/\n Fyy
for any (z,y) € X x Y. The exponent Y ¥ is defined as follows
Y& = (f1f €hom,_gu(X,V))  mkpx [ & ntracks f

and we leave the evaluation morphism to the reader.

As for cartesian closure in the slices, let ns consider morphisms f : X — Z and g :
Y — Z in the slice w-Set/Z: their product is obvious, and so is the terminal object in
this slice. The exponent is constructed in a fashion similar to that for PER. For any
2 € Z, define the set X, = {z € X | f(z) = z}; we turn this into a w-set by defining
Vz € X,.ntx, 2 & ntx z; we may similarly define Y,. Now the w-set Q is defined

as follows

Q {(z,h)| 2 € Z, h € hom ,_go((X:,Y:))
nkqg (2,h) & me(n)tz:z /\ my(n) tracks the morphism h
and it may be verified that the first projection  — Z is the exponent f? in the slice.
We can sce the full embeddings of PER and SET into w-Set.
Proposition 7.2.3 There 1s a full embedding Vs : SET — w-Set.

Proof: For any sct X we define the w-set Vg(X) = (X,Fx) with the relation Fx= X x A
For any function f : X — Y in SET, we have the morphism Vs(f): Vs(X) = Vs(Y),

which has f as the underlying map, and is tracked by (say) Az.z € A
Proposition 7.2.4 There is a full embedding Vp : PER < w-Set.

Proof: For any PER R, we define the w-set Vp(R) as having the underlying set Zn, and
with the relation + defined by n F [z]p € n € [z]p. For a map [s] : R — S in PER,
we define Vp([s]) as the map in w-Set having the underlying map [s] : Ep — g which

is obvionsly tracked by all the codes in [s] Fullness follows casily.
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We shall denote the full-subcategory of w-Set that is the image of Vp by the symmbol MOD.

There is an useful characterization of MOD which we state below.

Proposition 7.2.5 MOD is the full sub-category of w-Set consisting of objects (X, x)
satisfying the following condition.

Vz,ye X.nkxzAnkxy=>z=y (7.2)

Proof: If R € PER, then Vp(R) obviously satisfies this condition (equivalence classes do
not intersect). On the other hand, if there is an object X in w-Set satisfying the

condition then we may define a PER X as

s(XteodreXskxz\trxa

We may now verify our intuitions concerning w-Set- -namely that we may define a suit-
able fibration of PERs over w-Set which is sufficiently complete to be able to model both

dependent Types and polymorphism. We shall argue that the following fibration suffices.

Definition 7.2.8 We definc a fibration p : p — w-Set. The calegory p has the following

constitution.

Objects: Objects are X -indezed fanulics of PERs for any X € w-Set: more formally, an
object Rx, for X € w-Set, is a family Rx = {R:}zex such that each R, € PER.

Morphisms: For objects Rx and Sy, a morphism f : Rx — Sy consists of a pair (f, fx)
where f: X =Y inw-Set, and fy = {f; : R: — Sj(z)}zex 15 a X -indezed family of

arrows in PER, satisfying the condition:
Ine€AVz € XVp€ |z € X|.(n-p) tracks f;
we would say that such an n witnesses f (or the family fx ), or n realizes f.

The fibration p is defined in the standard way: its action on objects is p: Rx — X, and on

arrows f = (f, fx)— f.

It is pretty straightforward to see that this is a fibration: we shall not labour the details.
The important point to check is local smallness. The argument is sketched in the next

proposition.

Theorem 7.2.7 The fibration p in Definition 7.2.6 is locally small.
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Proof: Consider an object X € w-Set: and objects Ry and Sy in the fiber px. We define

the object [Rx,Sx] € w-Set as follows:

1]

[R,\',Sx] {(zaf) lz€e X, fe hOIanR(R,,S;)}
(n,p) FlRx.5x) (2,f) & ntx z/\p tracks f

with the “universal map” = : [Rx,Sx] — X simply being the first projection 7o. The
representing map wg; 17" (Rx) — 7*(Sx) in the fiber above [Rx, Sx] is given by:

(id[llx,Sx]’ {f}(z,f)E[Rx-Sx])

with the code which witnesses the second component being obviously 7. We shall
verify the representing properties of this structure. Consider any map a: Y — X in
w-Set, and a map u : a*(Rx) — a*(Sx) in the fiber over Y, witnessed by the code k.
We define the map g : Y — [Rx,Sx]:y+~ (z,f) where a(y) =z and f: R, — S, is
that map in PER that is tracked by k- h for all h € |y € Y|. We can verify that g is
tracked by the code (4, k).

Thus, the fibration has the basic structure needed to interpret dependent T'ypes. We shall
have to check now if the fibration is (sufficiently) complete. This question, as is well-known by
now, is none too straightforward itself. As we have mentioned earlier, there is a considerable
degree of variation in the criterion of sufficiency, especially when the arguments are carried
out in terms of internal categories (and in the internal logic of Toposes). The notion of
completeness that suffices for the interpretation of polymorphic Types can be summarized
in terms of Bénabou’s notion of complete fibrations that we have stated in Section 5.2, and

repeat here.
Definition 7.2.8 A fibration is saxd to be complete of 1t has:

o fibered products—i.e., for every morphism ¢ in the base, the re-indezing functor ¢ has
a right adjoint 114 satisfying the Beck-Chevalley condition.

o fiberwise finite limits.

Hence this is what we have to cstablish for our fibration p : p — w-Set. Let us look at
fibered products first. Before we do this, we shall state a few lemmas we would need in the
argument: most of the constructions are standard, and for a more detailed presentation, we

refer the reader to [48].
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Definition 7.2.9 For a w-Set A, we may represent an A-indezed collection of objects of
MOD by a mapping ¢ : A — MOD. By the notation f : A — ¢ we mean that f is a
(eztensional) mapping with domain A, and such that Va € A. f(a) € #(a). We define an
object Tl,c ad(a) € w-Set by the following clauses.

Haead(a) {f:A—¢|In€IVa€ AVpE |a€ Al.(n:p) Foa) f(a)}

nhneaee) f @ Va€ AVpe |a € Al.(n-p) Fg() f(a)

The significant point is that this object is an object of MOD.

Lemma 7.2.10 The object ll,ead(a) defined in Definition 7.2.9 inhabits MOD.

Proof: We shall have to show that I, 4¢(a) satisfies the condition set out in Equation 7.2
above. Consider a code n such that nbp,,4) f AR Fn,cad(a) 9- But then we would
have:

Va € AVp € la€ Al.(n-p) g j(a)/\(n -P) Fo(a) 9(@)
and since both f(a), g(a) € ¢(a) € MOD, (i.e. ¢(a) satisfies the condition in Equa-
tion 7.2), we would have that VYa € A. f(a) = g(a), which means that f = g (since they

were defined extensionally).

We have the main result.
Theorem 7.2.11 The fibration p: p — w-Set defined in Definition 7.2.6, is complete.

Proof: We have objects X,Y € w-Set, and a morphism ¢ : X — Y. Consider an object
Rx in the fiber py, and another Sy in the fiber py. We shall construct a functor
Ily : px — py and establish a bijection

(p,v) : hompy (¢°(Sy), Rx) 2 hom,, (Sy,Il4(Rx))

thus demonstrating the adjunction. We shall overload notation a bit and assume that
the X-indexed collection Ry corresponds to a map R : X — MOD?; hence, the PER
R; = R(z). Then we define

N(Rx) = {Iloeg-1(,) R(2)} yey

using the notation of Definition 7.2.9, considering R(z) as an object of MOD (via
the embedding Vp). Consider a morphism u : ¢*(Sy) — Rx, consisting of a family
{tz : Sg(z) = Rz}zex. Its image p(u) : Sy — Mg(Rx) is the family

{uy 1 8y = Mogg-1(4)R(z) : [') — f where f(z € $7'(¥)) = u=([¥'])}yey
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where ' € dom(S,). We claim that u(u) is witnessed by the code q=Azy2.(p-z-y),
where p is the witness for u. To see this, note that

YyEYVrelyeYlg.r = Ayz(p-z-y)=s
Vy' € dom(Sy).s-y = Az(p-z-y) =1t
Vzeg¢'(y)Va€jz € X|.t-a = (p-a-y) Fry u=([y'])
and hence we can claim that t tracks f (we have used A-terms directly instead of
equivalence classes). Looking at the other part of the bijection, given u : Sy — M4(Rx),

consisting of the family u, : Sy = Il ¢4-1(,) R(z) we define v(u) : 4*(Sy) — Rx to

consist of the family

{4z Sazy = B : [¥'] = (wy([¥))(2))ex

where y' € dom(Sy(z)). We claim that v(u) is witnessed by the code p = Azz.(g-r-z-2)-z

where ¢ tracks u and r tracks ¢. To see this, note that

Yz € X.Va € |z € X|.Vy'. € dom(Sy(z)).p-a ¥

(g-r-a-y)a

((q-(r-a))-y)-a
((g-€)-y')-a for some e € |¢(z) € Y|

1]

f-a  for some f that tracks u,([y’])

(uy([¥'D)(=)

m

and hence the proposition. It is straightforward though tedious to verify that the maps
p and v are inverses, and that the naturality conditions hold. Likewise, the Beck-
Chevalley can be seen to hold, and we do not labour the details.

Fiberwise finite limits follows easily from the fact that PER has finite limits (cf. The-
orem 7.1.3): the operation of the re-indexing functors being essentially one of pulling

back, they preserve the limits. The details are straightforward and we omit them.
The fibration p has another remarkable property: it has a full and faithful cartesian functor
to the codomain fibration cod : w-Set™ — w-Set.

Theorem 7.2.12 ([61, Prop. 4.3.16]) There is a full and faithful cartesian functor ¢ : p —
cod, where cod : w-Set™ — w-Set is the codomain fibration.
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Proof: The action of ¢ on an object Rx in the fiber over X may be described as follows.
We define Y as the w-set given by the disjoint union
LI =n, with (2, 1)) € Y1 = {(k,m) |k € |z € X|,n € (5]}
zeX

where [p] is the equivalence class of p with respect to the relation R;. Then we define
d(Rx)=mp:Y = X :(z,[p]) = =

Now consider an arrow f: Rx — Sy in p. The image ¢(f) is the commuting square
in w-Set shown if Figure 7-1, with the morphism f’ : (z,[p]) = (f(z), fz([p])) tracked
by the code

Az(n - mo(z),(m - n-mo(2))- m(z))

where n tracks f and m witnesses f. Cartesian-ness follows from the basic pullback
structure of cartesian liftings, and their conservation under the mapping described

above. Fullness and faithfulness are straightforward too and we do not labour the

details.
Uzex Zn, I quV ES,
o To
X f Y
Figure 7-1:

Finally, we may establish the fact essential to the interpretation of Polymorphic Types—

namely the presence of a generic object.

Theorem 7.2.13 The fibration p : p — w-Set defined in Definition 7.2.6, has a generic
object.

Proof: We shall denote the set of all partial equivalence relations (over A of course) by PER.
Consider the w-set Mo defined as (PER,Fp,) where Fp,= A x PER. The generic
object for the fibration can be easily verified to be the object {R}geM, in the fiber
over Mp.
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Hence, Theorems 7.2.13 and 7.2.11 taken together give us the structure adequate for
interpreting the polymorphic lambda calculus. We may also remark, that since the fibration
p is locally small and has a generic object, it is a small fibration—i.e. (equivalent to) the
externalization of an internal category in w-set. Obviously, the object of objects of this
category is Mo, viz. the sct of all PERs. Since our ultimate aim in this chapter is to
structure our category A (of the previous chapter) too as an internal category in w-set— it
behooves us to give a description of it, and we do so in the following proposition (which we

state without proof).

Theorem 7.2.14 The structure M described by the following data, constitutes an internal

category in w-Set.

Mo —the object of objects is as defined in Theorem 7.2.13.

M, —the object of morphisms is defined as ({{(X,f,Y)|(f: X — Y) in MOD},Fp, ) and
such that nFy, (X, /,Y) & n tracks f.

& —the domain map, is defined as 9y : (X, [,Y) — X.

0y —the codomain map, is defined as 8, : (X, f,Y)—~ Y.

ltTM —the identity map, 15 defined as dyg : X — (X,[1], X).

oM —the composition map, is defined as o : (X, f,Y),(Y,9,2)) — (X,90 f,2Z)

The proof is straightforward and we refer the interested reader to any of the standard works

on the topic. It is easy to see that our fibration p is nothing but the externalization of M

(up to isomorphism).

Proposition 7.2.15 The fibration p : p — w-Set is the ezternalization 3° M of the internal
category M.

Proof: We recall that the objects of the tot.ﬂ category (of the externalization) 3~ M are pairs
(A, f : A = M), which arc essentially A-indexed familics of PERs for objects A € w-
Set—which is the same as those of the category p. Morphisms (A4, f: A — Mg) —
(B,g: B — My) are pairs (u,h) such that u: A - B ir! w-Set, h: A = M, and the
following equations hold.

ooh=f O1oh=gou
Thus, morphisms between a A-indexed family of PERS, and a B-indexed family are

essentially A-indexed families of PER morphisms {ka : Aa = Buy(a)}aea, With the



132 CHAPTER 7. THE REALIZABILITY TOPOS

nuance that, since the map h is in w-Set, there is a single code n, such that for all
a € A and any p € |a € A, n-p tracks k,. This corresponds exactly to our definition

of morphisms in the total category p.

Thus the “naive” category PER may be recovered by taking global sections of the internal
category—i.e. the fiber over the terminal in w-Set. Moreover, this result taken in conjunction

with Theorem 7.2.12 gives us the following significant fact.

Theorem 7.2.18 The structure M is a full internal sub-category of w-Set.

Proof: From Theorem 7.2.12 and Theorem 7.2.15, we may verify that ¢ is a full comprehen-
sion category preserving fibered terminal objects. Also, it is fairly easy to see that ¢ is

the internal global sections functor. We omit the details.

It also turns out, that when we take the definition of a limit-as-an-adjunction appropri-
ately relativized to this internal category, the “external” construction of the limit in PER
(for uniform families) as discussed in the previous section, turns out to yield the true limit.
In other words, there exists an internal right adjoint 11 : [Mo — M] — M to the internal
diagonal functor A : M — [Mp — M|, where My is to be understood as the discrete category
whose object of objects is Mg as defined above. In fact, the internal category M turns out
to be strongly complete, as defined in Section 5.22: this means that completeness holds (for
its externalization) in the fibered sense (that is, for familics of diagrams of possibly varying
shapes). The proof for that would take as too far afield into the descriptions of internal func-
tors, and internal adjunctions and so forth, and we shall refer the reader to the references
([66, 18, 4, 36, 34)).

Finally there remains a point that could do with some clarification. In the last section we
saw that in PER, the interpretation of Polymorphic Types was done through the construction
of a right adjoint, and the latter was available as an intersection in the category. Yet, in this
section, the same thing was done through a right adjoint to re-indexing functors, and the
image of this right adjoint—viz. Il4(Rx) in Theorem 7.2.11 above—did not appear too much
like an intersection. Actually, for certain kinds of indexing sets, it turns out that this object
is (isomorphic to) the intersection: these are essentially w-sets X for which the relation Fx
is the complete cartesian product A x X —for instance, the set Mo (and its sub-objects). We
shall prove this as it ties together our intuitions regarding “naive” reasoning in PER vis-a-vis

the fibrational reasoning in this section. The result is taken from [48].

2when M is considered as an internal category of the realizability topos over X (cf. next section).
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Proposition 7.2.17 Let (A,+4) be an w-set, such that k4= X x A, and ¢: A — MOD;
then

Macad(e) > () ¢(a)

a€A
where we have confused the distinction between an object of MOD and one of PER.

Proof: We shall define a map s : N e4 #(a) — laead(a) : [z] — f, where [ : a — [2)¢(a)-

This map is realized by the code k (specific to our combinatory algebra ), since
Vae AVpela€ Al.(k-z)-p=z € f(a)

and hence k -z can be taken to realize f. For the other way around, we define a map
v:Iaead(a) = Naca ®(a) : f — [n-p] where p is any code in A and n tracks f. This
is well-defined since for any such p, and any @ € A, we would have that p 4 a, and
hence n - p must be in the domain of every ¢(a): the image of f then is simply the
equivalence class of (n - p) in the intersection, which would not depend on the actual
value of p. This map is tracked by the code Az.(z - 0) where the choice of the element

0 is arbitrary. It is easy to verify that the maps ¢ and v are mutual inverses.

7.3 The Realizability Topos

As we have stated, the development of the thesis from this chapter onwards is towards the
embedding of the constructions of the earlicr chapters into a categorical model of Intuitionistic
higher-order logic: the ultimate objective being to elucidate the relationship between the
semantics of proof-objects and that of denotations (or provability, in the case of propositions).
We have remarked that there is a loss of information in the transition from the former to the
latter, and it would be insightful to see this transition within an appropriate intuitionistic
universe. The latter is salient to our general project since the A-Types, which we would like
to think of as encoding all the functional information in A-terms, should yield something
akin to a program logic—viz. a framework for reasoning about denotational equivalences.
In other words we would like to think of (the denotational spaces of) programs essentially
as (non-standard) sets (with full (standard) function spaces): thus the standard predicate in
denotational semantics, “is less defined than” should be just the subset relation in some non-
standard model of Intuitionistic Set Theory. With this objective, we provide a brief sketch of
the background on Realizability Toposes. This exposition is not meant to be cither rigorous
or comprehensive—for which we would refer the reader to any of the references ([61, 58, 33]),

(from which is gleaned most of the following discussion).
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We shall consider a Topos constructed on the combinatory algebra X. This algebra pro-
vides a model of computation, and we shall construct from it, a set of non-standard proposi-
tions. The essential idga, which can be traced to Scott and Hyland, is to cast the realizability
interpretation ([61, pages 86-92]) in the form of a model for intuitionistic propositions: a
proposition (truth-value) is conceived as the set of its realizers, that is, a set of elements
(codes) drawn from the combinatory algebra A (putatively, the representation of the proofs
of the particular proposition). Hence we have a set of non-standard truth values 2;\, which

we may turn into Heyting pre-algebra through the following definition.

Definition 7.3.1 For p, q¢ C A, we define

pAg = {(mn)imep,neq}
Ve = {(0m)|mep}J{(1,n)|n€q)
p—q = {e|Vnepe-negqg)

p<qg & p—q#0

form which it follows that § is the bottom element, and any non-empty p is a top clement.

We shall denote this structure as 2.

This gives us the basic framework in terms of which we may define, for any set X, the set QX
of non-standard predicates on X. We structure this set as a Heyting pre-algebra (X, x)
through the following operations, noting the nuance in the definition of the order relation

Fx, which is uniform rather than pointwise.

Definition 7.3.2 For ¢,9 € QX we define the following operations

AP = ¢=z)\¥(2)
Vo)) = =)\ ¥(z)

(¢ — ¥)z) = ¢(x) — ¥(2)
(¢Fxv) & g {¢(x) — W(z)} # 0

from which it follows that Az.Q is a bottom element and Az.P for any P # @ is a top element.

We may define a quantificational structure on the predicates; these are described below and
are a restricted case of a general notion of quantification as adjoints to substitution along

arbitrary maps—which are taken to be projections in this case.
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Definition 7.3.3 For ¢ € Q**Y we have the operation of quantification defined by the

following rules.

(3y.¢(z,9))(z) U Almo(2) = 2] A\ ¢(2)}

z€EX XY

N {lmo(2) = 2] — (2)}

z€X XY

(Vy-¢(z,9))(z)

where, we define
T ifne(z) =12z
0 otherwise

o= 1= {

We have the notion of validity (symbolized as |=) which is fundamental to the definition
and study of the Realizability Topos.

Definition 7.3.4 For a predicate ¢ € QX , we say that ¢ is valid, |= ¢ under the following
condition.

FoeThx e

By Definition 7.3.2, we have that

(Ed)e () ¢z)#0

z€X

We may now define the Realizability Topos.
Definition 7.3.5 The Realizability Topos is a category R, with the following constituents.

Objects: An object X = (X,=) is a set X with @ map = in QX*X (which essentially

represents a non-standard equality) satisfying the following conditions.

(symmetry) E z=y—y=2
(transitivity) E z= y/\y =z—z=2z
We will write z € X (or Ez) for the predicate = = z, and denotc the truth-value
=(z,y) as[z =y}
Morphisms: A morphism f : (X,=) — (¥, =) isan cquivalence class of functional relations,
where a functional relation ¢ is a map in QXxY satisfying
(relational) | #(z,y) Nz=2Ny=y — &(z',y')
(strict) E ¢(z,y) — Ez/\Ey
(single-valued) F ¢(z, y)/\¢(1, y)—y=1v
(total) E Ez — 3Jy.4(z,y)
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and the equivalence relation ~ on such functional relations is defined as follows.

6~y ok (6(z,) — ¥(z.9)

~

We shall overload the symbol 2 and use it to denote both the Heyting pre-algebra defined
in Definition 7.3.1 as well as the object (2, ——) in R. We shall denote an arrow [ : X =Y
in R as [¢], where ¢ is a functional relation representing f, and the square brackets denote
the equivalence class of ¢. For any such an ¢, we shall denote ¢(z,y) as [y = ¢(z)].

We record the following standard fact omitting its proof, for which we refer the reader to
the references ([33, 37]).

Theorem 7.3.8 The category R of Definition 7.3.5, is an elementary Topos.

It would not be difficult to anticipate that the sub-object classifier is the object 2. We shall
demonstrate a full embedding of SET into 2.

Proposition 7.3.7 ([33, Prop. 4.2]) There is a full and faithful functor As : SET — R.

Proof: For any set X, we define an object Ag(X) in R as follows: Ag(X) = (X, =) where,

forz,ye X
T ifz=y
r=yl = 1
® otherwise
Any arrow f: X — Y in SET, has as its image under Ag, the arrow Ag(f): As(X) —
As(Y) represented by the functional relation (we shall use the same letter f for it) for
which
T ify=f(z)
lv=flz)) = )
0 otherwise
To see that Ag is faithful, suppose there are two arrows f,g : X — Y in SET such
that

E ly=/@)]—ly=9()]

> ly=f@=Tely=9@)]=T

= y=[f(z) @ y=g(z)
and hence f = g. To see that Ag is full, consider an arrow [¢] : Ag(X) — Ag(Y) in R.
This gives us an arrow ¢: X x Y — Q (in SET of course). We claim that

Yz € X3y €Y. ¢(z,y) # 0

3Actually there is a lot more to the story here: SET is itself a Topos, and the full embedding claimed here
has a finite-limit preserving left adjoint—and thus we have have a geometric morphism from SET to R ([33}).
This is not an internal language statement!
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and this can be seen as follows. Consider y and y' such that ¢(z,y) # 0 and ¢(z,y’) # 0.
But then we have the internal validity

E oz ) Az, y) —y=1y

and since y = y’ holds exactly in case y is actually identical to y' (from the definition
of the embedding As) we have the proposition. This condition (and totality) yields us
an obvious arrow f: X — Y in SET, and we can easily see that ¢ represents As(f).

We can describe certain objects of R in terms of this embedding. The terminal object is
(up to isomorphism) the object As(1s) where 15 is the terminal object in SET (that is, the
singleton set). R has a natural numbers object Ag(R) where R is the set of natural numbers.

We shall demonstrate now, a full embedding of w-Sets into . We define a functor

A, : w-Sets — R as follows.

Definition 7.3.8 The action of A, on objects may be described as follows: A, : (X,Fx) —
(X,=) where, for z,z' € X

c=g] = lreX| ifz=2a
’ /] otherwise
For an arrow f : (X,Fx) — (Y,Fy) tracked by a code n, we define a function ¢ : X xY — Q

as follows.
{(pn-pipelze X} ify=f(z)
0 otherwise

#(z,y) = {

and define A, (f) as the arrow represented by the functional relation ¢.
Of course, we must show that ¢ is indeed a functional relation.

Lemma 7.3.9 ([61, Lemma 4.4.18]) The predicate ¢ as defined above, is a functional rela-

tion.

Proof: We have to demonstrate the four validities (i.e construct realizers) in the definition

of a functional relation.

Relational: We note that [z = z'] # 0 # [y = '] implies that z = 2’ and y = ', and
hence ¢(z,y) = #(z',y'). Hence the relationality predicate is realized by the code
Az.mo(z).

Strict: From the definition of ¢, we can see that if ¢(z,y) is non-empty, then the first
component of any of its elements give us a realizer for z = z, and the second for

y = y. Hence the strictness predicate is realized by the code for identity.
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Single-valued: We note that if ¢(z,y) Aé(z,y') # @ then by the definition of ¢ we
would have that y = f(z) = ¥'.
Az.mi(7o(2)).

Total: Referring to the definition of existential quantification, we have that

Hence the predicate is realized by the code

(3y-4(z,9))(=) U Almo(2) = z] A ¢(2)}

z€XxY

Uiz =z \d(z,v)}

vey

Hence, the totality predicate would be realized by the code Az.(z,n - z).
Theorem 7.3.10 ([61, Lemma 4.4.18]) There is a full and faithful A,, : w-Sets — R.

Proof: Consider objects (X, =),(Y,=) € R, which are in the image of w-sets (X,Fx),(Y,Fy)
under the action of A, and an arrow f = [¢] : (X,=) — (¥,=). Let p be a realizer for
the totality predicate: that is

Vz € XVs€|z€ X|.p-n=(l,k), wherel € Ey, k € ¢(z,y)
for some y € Y. We define a map ' : (X,Fx) — (V,Fy) as follows.
f':z— ywheredly € YVs€ |z € X|.mo(p-s) € Ey (7.3)

We must prove that such a y is unique. Consider some other s’ € |z € X|; let us
have some other y' € Y, such that p- ¢’ = (I',k') with I' € Ey’ and k' € ¢(z,y'); let
p-s = (l,k) for s of Equation 7.3. Let the realizer for the single-valuedness predicate
be . Then we have that r - (k,k’) € [y = y’] which means that [y = y'] #Qory =1y
Hence, the embedding is full.

As for faithfulness, consider maps f,g : (X,Fx) — (Y,Fy), such that A,(f) = Au(g) =
[#] where ¢ is a functional relation on X x Y. By the definition of A,,, we would have
that

#(z,y)

{{(p,n-pnpelzexn v = /(z)
0 y# f(z)
{{(p,m~p>|pe|zexu} y=g(z)

0 y # 9(z)

where f is tracked by n and g by n. This tells us that Vz.y = f(z) iff y = g(z), and
hence f = g.
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As we can see from Proposition 7.3.7 and Theorem 7.3.10, the Realizability Topos is a large
object: it contains both the category of Sets—which is essentially the universe of classical
mathematics, and the w-Sets—which is itself a larger universe, and in which a fair amount of
constructive math can be done, (it is what is known as a quasi-topos; an excellent reference is
[90]). The theory of the Realizability Topos, and the general theory of Toposes is an extensive
field of research itself, and much of the discussion is beyond the ambit of our study. What
we are interested in primarily, is to see that the category of partial equivalence relations is
equivalent to an internal category within the Realizability Topos, and is sufliciently complete
to be able to model higher-order Type theories. We have already seen that the category of
PERs is a full internal sub-category in w-Sets. Since w-Sets embeds into R, we would like to
think that the PERs would be a full internal sub-category in the latter too, and with all the
completeness that it had in w-Sets. Since the structure of a full internal sub-category and
its completeness as one, depends on the (locally) cartesian closed structure of the ambient
category, we would be able to assert the proposition only if the embedding A, preserved
the locally cartesian closed structure of its domain. This claim and its demonstration is so
well-known by now, that we would be justified in describing it as “folklore.” The argument
is by no means trivial, and is usually derived from a general theory of what are known as
j-operators in any Topos. A discussion of this theory would be a digression from the logical
development of our thesis, and we would merely sketch a broad picture, leaving the details
to the interest of the reader and the standard references on the topic ({33, 34, 36, 42]).

The essential idea is to characterize the objects of R in the image of A, in the internal

logic. This is not difficult and was done by Hyland in his pioneering paper ([33]).

Definition 7.3.11 An object (X, =) € R is said to be ~~-separated, if the following condition
holds.
EVz,2' € X~(z=12') — (z=2)

This is not the only characterization of the class, nor the primary one (cf. [33, §5, page 182]).

The class has a number of interesting properties among which we may mention the following.
o The sub-object of a ~—-separated object is ~--separated.
o The full-subcategory of ~—-separated objects is cartesian closed.
o The full-subcategory of ~~-separated objects is locally cartesian closed.

The most significant fact from our point of view is the following.
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Theorem 7.3.12 ([33, Prop. 6.1)[61, Prop.4.5.21]) An object of R is ~~-separated iff it is
isomorphic to one of the form (X, =) satisfying

. [z=2)#0&z=1
that is, to (the image of) an w-set.

Proof: 1t is easy to sec the “if” part. By the definition of A,, we know that |z = z'| # 0
exactly when z = z/. Moreover it is known that in the Topos, if a formula ¢ is realizable,
then any code realizes ~—¢. Hence the proposition. For the “only if” part, it can be
shown that if an object is ~—-separated then it is a sub-object of Ag(X) for some set

X; and any such object would be in the required form.

Finally we record the fact most significant for our purpose.

Theorem 7.3.13 The full sub-category comprising the separated objects is locally cartesian

closad, and the embedding A, preserves the locally cartesian closed structure of the latter.
Proof: We refer the reader to: (33, §5,6,pages 181-188] and [34).

Some more labour is needed to prove that the internal category M in w-Set is a full internal
sub-category A, (M) within R, and possessing the relevant completeness structure: we refer
the reader to the references ([34, 36, 66]). We have alternate characterizations of the image of
PER and of that of M in R. The former is equivalent to the category of “effective objects,”
which is essentially a quotient of a closed sub-object of A, by a closed equivalence relation
(for the precise meaning of this statement, we refer the reader to [34)], [33]) and [61], and for
other characterizations, to [36) and [66]). This (sub-) category of  is known as the category

of modest sets.

7.4 )-Types as Modest Sets

In this chapter, we have have presented so far an account of certain “standard” constructions
within the Realizability Topos. The culmination of this account has been the demonstration
of a full internal subcategory—namely the Modest Sets, which are essentially the (internal
version of the) partial equivalence relations on the underlying combinatory algebra. In this
last section we shall place our own constructions—specifically, the full internal category A
that we have constructed in the previous chapter—within the framework of the Modest Sets.

The reader would already have seen that the Basic Types in our system (we shall describe
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them as A-Types too) are, in fact partial equivalence relations—namely, restrictions of the
relation =~ to their respective domains. This allows us to embed them in the category of
modest sets, and explore their properties in this context. The constructions are carried out ,
relative to the w-Sets, since the Theorem 7.3.13 allows us to “lift” the results to the Topos
R (through the embedding A, that preserves the LCC structure of the domain). We shall
connect the earlier construction—specifically the fibration p : A — B, to the current one,
through a change-of base situation.

We shall denote the object of objects and the object of morphisms of the internal category

A as Ap and A respectively. We have the following simple result.
Proposition 7.4.1 The small category A is a full sub-category of the category PER.

Proof: A more precise statement of this proposition is that the fiber (A),o (over the terminal
object 1o of B) is a full sub-category of PER (note that the fibration A is (isomorphic
to) the ezternalization of A; c¢f. Remark 6.2.24). In this form, the proposition is almost
obvious. Every object of the former (i.e. every Basic Type) is a partial equivalence
relation—namely ~ restricted to an appropriate domain. On the other hand, every
A-morphism a — f is the ~ equivalence class [f] of a A-term f that tracks the cor-
responding PER-morphism. Conversely, every PER-morphism tracked by a code f,
corresponds to a A-morphism tracked by the set of codes in [f]~. The only point to
note is that the representation of any morphism (in terms of its realizers) in the two
categorics would, in general, differ: for (i\)lo, the relevant equivalence relation (on the
function space) is ~ in every instance, while for PER, it depends on the PERs a and

B (cf. Definition 7.1.2).

We have noted in the previous chapter that B is a sub-category of w-Sets (Proposi-
tion 6.2.2). In fact it is easy to see that pullbacks, and in general, the relatively cartesian
closed structure of the former is preserved by the embedding (which we would denote as t).

We note the fact formally, omitting the easy proof.

Lemma 7.4.2 The embedding 1 : B — w-Set preserves the display map structure, and the
relatively cartesian closure of 1ts domain (with respect to the former).

We can also see that this embedding exhibits A as an internal category in w-Sets. We record
the fact below.

Proposition 7.4.3 There 1s an wnternal calegory 1(A) in w-Sets, for which the relevant sub-

structures are the images, under 1 of the corresponding sub-structures of the internal category

AinB.
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Proof: It is straightforward to verify that all the structures and conditions for an internal

sub-category in B are conserved by the embedding (using Lemma 7.4.2).

Thus we may re-formulate Proposition 7.4.1 as stating that the internal category A is (in-
ternally) a full sub-category of the internal category of modest sets M; we leave the fairly

simple proof to the reader.

Proposition 7.4.4 The internal category A is (internally) a full sub-category of the internal
category of modest sets M.

Thus, we have a monic €: y(Ag) — Mg, which we shall invoke in the results below.

We have already seen (in Chapter 6) that A is a full internal sub-category of B. The
significant point is that #(A) is a full internal sub-category of w-Set; this is not as trivially
established as it may appear and we prove first, two subsidiary results. In the sequel, we
shall suppress the notation 1(-) for objects in w-Sets in the image of ¢, whenever the fact is
clear from the context.

We shall establish the change-of-base sitnation between fibration A and the externalization

3(2(A)), depicted in Figure 7-2; let K be the functor given by:

K:{OE{ﬂz}:e‘b — ($,G:6— Ao)
f‘E(“y{f:}re Land (“vf"ds_’Al)

where & is as given in the proof of Theorem 6.2.19; and f : z — f, is tracked by the code
An.fn where f is the realizer of the family f (cf. Proposition 6.2.25).

Lemma 7.4.5 The square indicated in Figure 7-2 (with sides K, [t¢(A)], and p, 1) is a change-

of-base situation.

Proof: We shall use the fact that A S(A). We show that the square indicated is
a 2-pullback. The vertex of the 2-pullback of [¢(A)] along 1 would be denoted as
B X, get 2_((A)), and abbreviated as K. Consider any object b € B; an object
in the fiber K, can be seen to be of the form (b, f : :(b) — #(Ap)) and this corre-

R

sponds exactly to the (unique) object (b,f :b — Ao) in the fiber Ay (on account of
the embedding). Similarly, any object (b, f : b — Ao) in the fiber Ap, would correspond
to the unique object (b,2(f): () — #(Ao)) in the fiber K;. Now consider any map
h: (b, f:1(b) = 2(Ag)) = (c,g:2(c) = 2(Ag)) in K (b,c € B): this would consist of a
pair (u,h’) with u:b — ¢, and I/ : b — Ay, and be over the map u (eliding the s nota-
tion). Now A’ yields a b-indexed family of maps in small category A (of the appropriate

domains and co-domains), which is precisely a-A morphism between the corresponding
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objects in the fibers over b and c respectively. Conversely, any A morphism h over the
B-morphism u corresponds to an b-indexed family of maps of the small category A (i.e.,
to a morphism h’: b — A;) and hence to an unique K-morphism #(h') over #(u). Hence

K is equivalent to A, and hence the proposition.

B J w-Set™
A w-Set™
L) Li(x(A)) L(x(A))
i K T(1(A)) M
Y ((A))
cod cod
P [«(A)] («(A))
w-Set
B t w-Set

Figure 7-2: Relationships.

In the next result we demonstrate that the internal global sections functor [J(2(A)) factors
through the functor ¢ : p — w-Set™ of Theorem 7.2.12. The situation is illustrated in the

second diagram of Figure 7-2.

Theorem 7.4.8 There is a full, cartesian functor L : Y (x(A)) — p and we have [J(2(A)) =
¢o L.

Proof: We shall implicitly make use of the equivalence 3_(M) & p. We prove first the exis-
tence of L. Any object (A,a: A — Ao) (we have suppressed the ¢ as before) in 3 (2(A))
corresponds, from Proposition 7.4.1 above, to a map foa: A — My, and hence to the
object [corresponding to the A-indexed family of PERs given by] € o a; we denote the
A-indexed family of PERs as £(a) and set £ : (A,a: A — Ao) — £(a). Similarly, from
Proposition 7.4.1 above, a morphism h : (4,a : A — Ag) — (B,b: B — Ao) given as the
pair (u: A — B,h’: A = A;) corresponds to an A-indexed family of PER-morphisms
(realized by the code Az.hx, where b tracks h'); we denote it by €(h’) (with the ap-
propriate domains and co-domains) and we may sct L : h— €(I'). Fullness is easy to

see: any map f : £(@) — £(b) in p, is a A-indexed family of PER-morphisms (with
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appropriate domains and co-domains) and corresponds to an unique map f': A — A,
(once again by Proposition 7.4.1), tracked (essentially) by Az. fz, where f realizes the
family f. We can easily verify that the relevant equations (for a morphism in the ex-
ternalization) hold for f’, and thus f' may be taken to the morphism in 3"(3(A)) which
is mapped by L to f. '

It is a bit more difficult to see that £ is cartesian. We refer to Figure 7-3 for the reason-

ing. Consider a cartesian morphism# : (A,a: A — Ag) — (B,b: B — Ag) given as the

X
X m " m
qou
b L3
a h Y

’
1 a
/ b
idg ‘ i h
n Tq ™ T
Ta L)
A u B x " A v B

Figure 7-3: L is cartesian.

pair (u: A — B,h' : A > Ay), in Y (1(A)). We take its image in w-Set™ (composing
L with ¢) and this is the commuting square shown on the left—u o 7, = m 0 A—with
the map h obtained from ¢(h') as characterized above. We shall claim that £(h’) is
cartesian. Consider any map m : X — £(b) above u: its image under ¢ is the com-
muting square shown in the diagram at the left (7, o M = w o n). Now pulling back
7y along u o n we have the following situation: we have morphisms idg : X — X and
m: X — b, with my 01 = idg o u o n, and thus, a mediating morphism p : X — Y.
Now the morphism 7} : Y — & yields a corresponding morphism ;rz in p (¢ is full and
faithful); we would also note that ¥ corresponds to an object (X,(bouon): X — Ao)
in Y((A)) (in the fiber over X)—and hence ﬁ corresponds to a morphism—Ilet us
denote it as k—in Y (2(A)), with co-domain (B,b: B — Ao). Since h is cartesian, we
have an unique morphism ¢ (above n) such that k = h o gq. Taking the image of this
system under ¢o L we have the situation shown in the figure to the right, with 7} = hog

(¢ being the image of g). Now we have the following identities:

TaOogop = 110#(’)0[!

noidg
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hence, this tells us that the p-morphism corresponding to § o y is above the identity
id4 (fullness of ¢ invoked here); then again

ﬁoqoy = x;o“

= m

and hence, it follows that for an arbitrary m considered as above, there is an unique
morphism (given as the p-morphism corresponding to § o ) above the identity id4,
such that m factors through €(h’), by this unique morphism. Hence we may assert that
{(h') is cartesian, and that £ is a cartesian functor.

It’s not difficult to see the commutation [J((A)) = ¢oL. For any object (A,a: A — Ao),
the image under [J(¢(A)) is obtained as the the pullback of the generic family p : X — Ag
obtained as given in Figure 5-4, (with the category M replaced with A) along a. The
reader may easily verify that this is isomorphic to the image under ¢ of the A-indexed
family corresponding to the map €0 a—or in other words, to the map =, in Figure 7-3.
On the other hand, the image of a morphism h : (A,a: A = Ag) — (B,b: B — Ag)
given as the pair (n: A — B,h' : A — A,) is given as the image of the generic morphism
s (in the context of Figure 5-4) under the action of the pullback functor derived from
h'. 1t is straightforward to verify that this is (isomorphic to) the square shown on the
left in Figure 7-3 (vom, = mp0 i)—which is obtained under the action of ¢ o £ on h.

Hence the proposition.

This allows us to assert the next results quite easily.

Theorem 7.4.7 The internal category y(A) is a full internal sub-category of w-Sets.

Proof: We have to establish that [[(2(A)) is a full comprehension category. But we know
already that ¢ : p — w-Set™ is a full comprchension category, and that £ is a full
cartesian functor, and [[((A)) = ¢ o L. Moreover, preservation of fibered terminal
objects is easy: it follows from the fact that the A-Type §[Q], which is an internal
terminal object of the category A, is isomorphic to the terminal object 1 of PER (and

thus of the internal category M) described in Theorem 7.1.3. Hence the proposition.

Finally, we shall claim that ¢(A) is a full internal relatively cartesian closed sub-category

of w-Sets, relative to the full sub-category B. To establish this we use the following lemma.
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Lemma 7.4.8 If J is the embedding B~ — w-Set™, then

Jo] ] =LIx(a) ok

~

where K is as indicated in Figure 7-2.

Proof: As we have seen above, the action of both [J(A) and [J(3(A)) have the same char-
acterization: on any object (A,a [A - Ao) in A (using the equivalence A = 3°(}))
the former yields the morphism mn, : @ — A in B (and hence in w-Set), obtained as
described in the proof of Theorem 7.4.6 above. This is exactly image of (4,a: A — Ao)
under [I((A)) o £ as argued above. The same consideration holds for morphisms:
the image of a morphism h : (A,a: A — Ag) — (B,b: B — Ag) given as the pair
(u:A— B,k : A— A,) is given as the image of the generic morphism s (in the con-
text of Figure 5-4) under the action of the pullback functor derived from h’. As argued
in the proof of Theorem 7.4.6 above, this is (isomorphic to) the commuting square (in
B, and hence in w-Set) shown on the left in Figure 7-3 (vo7, = m,0 k), and once again

this is precisely the case for the image under [J(2(A)) o £. Hence the proposition.
We have finally the main result.

Theorem 7.4.9 :(A) is a full internal relatively cartesian closed sub-category of w-Sets,

relative to the sub-category B.

Proof: Follows immediately from Lemma 7.4.8: we have already demonstrated that [J(A)
(which is but the comprehension category P of Chapter 6) is a closed comprehension cat-
egory, and this is preserved by the embedding J (the reader might like to step through
the details involved in this verification). The change-of base situation of Figure 7-2
has already been established in Lemma 7.4.5 above. Preservation of fibered terminal

objects follows on the same consideration as suggested in the proof of Theorem 7.4.7.

This brings to a close the first part of our effort to see the category of A-Types structured
as a full internal sub-category within the Realizability Topos®. In the next chapter we shall see
that the small category A admits the notion of a partial order, and hence may be completed
into domains. However, we can already notice an interesting fact: the completeness properties
of our category get progressively weaker in the process of the embedding. While A had an

internal relative cartesian closure in B it remains merely so, relative to the latter when

5Though we have demonstrated the relevant conditions for the case of w-Sets, by virtue of Theorem 7.3.13,
this structure is preserved by the embedding into R.
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embedded into w-Set. In fact we shall note this process throughout the next chapter: as we
move from the semantics of proof towards that of denotation, the corresponding structures
lose much of their Type-theoretic completeness, and admit only domain theoretic properties.
This is reminiscent to some extent of the parallel situation for propositions—whereby in a

Topos, all proofs are collapsed into a single arrow. We shall have occasion to comment on

this in the sequel.



Chapter 8
Internal Domain Theory

This final chapter is concerned with the relation between the Heyting-semantics of A-terms—
the semantics of proofs (or proof-objects, to be precise)—and the traditional semantics of
the denotational kind. We have already mentioned that the development of our thesis has
been oriented along a course parallel to that of a Heyting-semantics for propositions. The
epitome of this latter development is, as we know, a constructive theory of Types—the
simplest example of which is perhaps Girard’s System F, or the (second-order) polymorphic
A-Calculus. We have remarked that the move from proofs (in fact, any representation of
intensional information) to denotations would in general entail a loss of information. In the
context of propositions, this is casily seen: in a categorical model for intuitionistic higher-
order logic—which is an elementary topos—the proofs are collapsed into a single morphism,
that simply tokens provability. In other words, the object of propositions (truth values) in a
topos is a Ileyting algebra object, and the Type structure of constructive proofs is lost.

The hiatus between denotations and proofs shows itself especially with respect to the
denotational semantics of the Types themselves. We have remarked carlier that such a se-
mantics, in terms of an adequately complete full sub-category of the classical (or boolean)
topos of Sets is ruled out on cardinality considerations ([65]). The resolution, as we have
remarked earlier, was to interpret the theory in an elementary topos—which had an intu-
itionistic internal logic. This was done by A. M. Pitts (through a generalization of an earlier
construction of D. S. Scott on cartesian closed categories with a reflexive object; cf. [74]),
by embedding a Hyperdoctrine model of the polymorphic A-Calculus into its presheaf topos
through the Yoneda functor ({62]). The presheaf topos was shown to contain a full internal
sub-category, closed under certain limits that could interpret the Type-theoretic operations,
and hence could interpret the object of Types. The constructive information in the proofs

could thus be conserved by embedding the category of Types as an adequately complete
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internal sub-category of the classifying topos. The remarkable conceptual gain in this is
that the Types could now be understood as essentially sets and reasoned about within a full
intuitionistic logic.

There was a more subtle aspect to this problem: if the Type theory was rich enough to
allow the construction of recursive terms (and Types)—as would be the case for (the Curry-
Howard Types of) certain logical theories with induction principles (cf. {52, 13])—the seman-
tics would have a natural domain-theoretic formulation. Domains have fix-points, however,
and it had been known for some time that fix-points do not sit well inside a topos (more specif-
ically, any cartesian closed category with equalizers): the objects degenerate ([32]). This was
in fact the reason why display map categories were formulated in the first place-as the gen-
eralization of locally cartesian closed categories ([85)). The resolution of this problem is still
an active field of research: the general principle is to construct adequately complete internal
categories of order-theoretic objects (which could interpret recursive constructs as fix-points)
in a topos—and this may be done in more ways than one ([1, 22, 13, 3, 58, 59, 86, 35, 68]).
A particularly elegant method is to induce the order synthetically, on the basis of recursively
enumerable sub-objects classified by an object of computable truth-values ([35, 68, 86, 58]).
This has the virtue of intrinsically relating general recursion theory and its denotational se-
mantics in a single foundational framework—and without any ad hoc notion either of coding
or of order—a conceptual possibility that had been unrealized since Scott and Strachey’s first
attempts towards a semantics of computable functions ([71, 75)).

In this chapter, we would attempt to formalize our intuitions regarding the constitution
of the denotations of terms from the sets of their proof-objects. We would see that the
problems and their resolutions, discussed above-whereby the constructive information in the
proofs is conserved within suitable internal categories—have a fairly close correspondence
with the situation in the case of A-terms. We would see that the proof-objects admit an
order-theoretic structure and denotational semantics may be formulated through a process
of completion (into dcpos). The resulting collection of objects constitute an internal category
of dcpos, and moreover one that may be conceived as a category of synthetic objects. The
analogy with propositions would be complete if this object of denotations—which is the object
of truth-values in the former case—could be shown to have analogous properties: specifically,
one might be led to expect that since the object of truth-values is a Heyting-algebra object,
the corresponding denotational objects for the A-terms would, at the least, be (internally)

cartesian closed.
The denotational semantics of programs is based, traditionally, on the notion of a Domain.

There are variants of this notion, but the essential requirements and the structure that fulfills
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them are reasonably clear. The most important condition is the ability to give a semantics to
recursive functions, and the structure that can do this economically is the directed complete
partial order, with a least element (abbreviated cpo hereafter; cf. [64]). The requirement of
directed completion comes from another (computational) direction: denotations of A-terms is
epitomized in the set of its approzimate normal forms (essentially, our residues); such a set is
always directed (c¢f. Lemma 2.2.6) and its least upper bound corresponds to the Bohm tree of
the A-term in question ([5, Chapter 14 §3]’). The category of cpos (and continuous functions)
has another important virtune: it is cartesian closed, (and closed under a variety of other Type
operations) and hence sustains an interpretation of a simply typed programming system.
Most significantly, it is possible to construct in this category, objects that are isomorphic to
their function space, and hence can interpret the untyped M-calculus ([80]). Thus, the notion
of a cpo evidently furnishes a general idea of a domain for denotational semantics. This
relatively simple notion may be refined in several ways. One is to endow it with the additional
property of algebraicity: essentially, the idea of equipping a cpo with a base of compact
elements, and such that any element is the supremum of the set of compact elements below
it ([73, 29]). The resulting class of objects are known as algebraic complete partial orders, or
Domains. These objects have significant advantages over the cpos: when considered as spaces,
their topology is determined by their lattice structure, and the topology of certain objects
constructed from of them through Type-theoretic operations relates simply to the topologies
of the initial objects ([72]). lence, the topological construction of spaces homeomorphic to
their function space is greatly simplified. T'he category of Domains (and continuous maps) is,
however not cartesian closed, so it is usual to consider maximal sub-categories which are. Two
such sub-categories are well known: the class of the SFP-objects, and that of the L-domains
(79, 43]). The former is known to be complete under most commonly used Type-theoretic
operations, including simple non-deterministic constructs (power-domains; cf. [63]).

Thus, we shall complete the analogy between propositions and programs (closed A-terms)
by structuring our Types as Domains. We have already remarked the existence of an (partial)
order on the A-Types. The move towards denotations is essentially one of completing this
incipient order structure under directed joins. The idea we have is essentially this: in the case
of propositions and in the transition to their denotations (truth-values) in the context of an
clementary Topos, all proofs were collapsed into a single arrow that tokened entailment; in the
case of programs, we will collect the inforination in the residues into the least upper bounds of
directed sets. 'Thus, we shall essentially complete the A\-Types by closure under the least upper
bounds of directed sets, suitably defined. Remarkably, under a certain constraint on these

directed sets (essentially, that they be recursively enumerable) the resulting class of directed
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complete partial orders is still contained within the sub-category of modest sets. These
objects sustain an interpretation of A-terms as directed completions of their approximations
(proof-objects). They are demonstrated to be dcpos (some of them do not posses a least
clement)—and most significantly, synthetic objects. By this we mean that the order defined
extrinsically on the A-Types is shown to coincide with an intrinsic notion of order derived
from the structure of what may be conceptualized as recursively enumerable sub-objects. This
demonstration is achieved through methods recently conceived in the study of what are called
Synthetic Domains. Moreover, the internal category of pre-domains is demonstrated to be s
sub-category of a certain canonical (internal) category of objects known as the replete ob jects
(35, 86]).

With this rather long preamble, which in our view was important in order to understand
the motivation behind the constructions in this chapter, we turn to the concept of internal

Domains.

8.1 An Internal Category of Domains

We shall tackle first, the question of obtaining from the (internal) category of A-Types, a
category of objects that have most of the stadard Domain-theoretic properties. We have
alrcady suggested, though never formally, that any A-Type a admits a notion of an ordering.
This partial order is essentially the Bohm tree 5-subsumption order ([5, Chapter 10 §3 & 4,
Chapter 19 §2]), well-known in the theory of separability and the local structure analysis of
A-models. After establishing this order, we apply a form of the directed-completion technique
(suitably modified for the internal logic) to obtain a class of what may be be described as
w-directed complete partial orders (abbreviated as w-dcpos): these have least upper bounds
of recursively enumerable directed sets, and in particular, least upper bounds of w-chains. In
this section, the constructions will have a “naive” flavor—meaning thereby, that they would
be straightforward translations of “external” constructions into the internal structure of the
Realizability ‘Topos. In the next section, we shall reformulate them in “synthetic” terms.
We review a few concepts from the theory of Bohm Trees and Solvability. The set of
all Béhm-like trees would be denoted by the symbol B7. The Bohm tree of any A-term z
would be denoted by B7(z). A fundamental relation among such trees is the relation of
n-expansion: denoted by the symbol <,, it is essentially the transfinite transitive closure of
the operation of making a single 7-cxpansion at any node. For a comprehensive account of

the operation and its properties, we refer the reader to 5, Chapter 10 §2].

Definition 8.1.1 For Béhm-like trees m,n, we define the binary relation m = n, and then
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by correspondence, for A-terms z,y, by the following equations.

m=<n < Im,n'eBT.m<;m Ang,n Am' Cn'

T Lys+<> BT(z) XBT(y)

It follows easily that the relation < is a pre-order on both B and A. The corresponding partial

order is defined in the usual way.
Definition 8.1.2 For m,n € BT, we have the relation ~ defined as follows.
m~né&s<mxin /\n <m

The relation ~ is defined on A-terms on the basis of the corresponding relation on the B6hm

trees, as before.

We have the easy conclusion: the relation ~ is an equivalence on both B and A. We shall

also be using the Bohm tree order C on the set of A-terms; that is
¢ Cy < BT(z) C BT(y)

for z,y € A. For a sct of A-terms X, if there exists a A-term £ such that
BT(z) = | {BT(z)|z € X)

then we consider that the least upper bound of the set X in the C order exists, and we write
z=1)X.

We have the important and well-known result in the theory of Solvability, which we state
below for reference. For the proof, which is by no means trivial, the reader is referred to [5,
Chapter 19 §2).

Proposition 8.1.3 The follouing equivalences obtain:
r>y &> VYC[].(C[z] is solvable & C[y] is solvable)
T =<y <= VC[].(C[z] is solvable = C[y] is solvable)
where z,y are A-terms.

Thus, the relation ~ defined in Definition 8.1.2 and that used earlier in Chapter 6 for the
construction of the proof-objects, coincide. With these preliminaries, we can define the partial
order on the modest set §[a] for any Basic Type [a]. For any clement z of the underlying

combinatory algebra A (which is itself an equivalence class with respect to the B-equivalence),
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we denote by [z], the equivalence class of # with respect to the relation ~. Note that the

relation <X on A-terms is compatible with g-equivalence: i.e. for
m=pgm'An=pnAm=<nem=<n

and also (obviously) the relation ~ contains the relation =g. For z,y € X, we shall abuse

notation and write z <X y to mecan that forany m € zand n € y, m =< n; and generally

confuse terms with their 3-equivalence classes.
Definition 8.1.4 For any [a] € Ao, we define the binary relation < on §[a] as follows.
[Z] 2y =z <y

This is obviously a partial order, and hence, any Basic Type denotes a partially ordered set.

Also, from Proposition 8.1.3 we have the following.
Proposition 8.1.5 For any [a] € A, and [z], [y] € §[a], we have

[z] % [y] <= VC[].(C[z] 15 solvable = C[y] 15 solvablc)
Proof: Immediate, from Proposition 8.1.3.

The considerations which led up to the characterization of the partial order < can be
cast in an appropriate internal form, whereby we have the sub-object < >— =2, for any a
that is (the denotation of) a Basic Type. Thus, the internal category A may be structured
as an internal category of posets in the Realizability Topos. In much of the subsequent
constructions, we would argue in the standard “external” universe (keeping the reasoning
sufficiently constructive), and then indicate the points at which they could be internalized.
From this category of poscts, we may obtain an equivalent category of internal domain-
theoretic objects by an appropriate kind of completion. The standard ideal completion does
not appear to be suitable since we would want the resulting category of domains to be an
internal sub-category of the modest sets: arbitrary ideals (or directed sets) would not admit
of disjoint scts of realizers. On the other hand, recursively enumerable directed sets (in a sense
to be made precise) would be more suitable candidates. We have the following formulation,
wherein the symbol [a] would always refer to an expression in the set of Basic Types, unless

otherwise stated.

Definition 8.1.8 A subsct x of $|a] is called w-dirccted iff there s a recurstely enumerable

set x such that
x = {lz}lz € x}

with x directed in the C order.



154 CHAPTER 8. INTERNAL DOMAIN THEORY

Thus, an w-directed set is directed in the < order. We shall say that x is the presentation
of the w-directed sct x. The precise reason for requiring that the presentation be recursively
enumerable is as follows: it is well known that the the poset of Bhm-like trees, (BT,C) is
an algebraic cpo. Hence the least upper bound of any ideal, such as x exists in B; however,
it might not be the Bohm trec of any A-term. The condition for this to be so is also known

and we record it for reference.

Theorem 8.1.7 ([5, Theorem 10.1.23]) The necessary and sufficient condition for a Bohm-
like tree A to be the Bohm tree of a term, is that the sel of variables free in A be finite,
and that A, considered as a function on the set of finile sequences of natural numbers, be

recursive.

Thus, if x is a recursively enumerable sct of closed terms, its least upper bound would satisfy

the conditions of the Theorem.

Proposition 8.1.8 The least upper bound of the Bohm trees of any recursively enumerable

directed set of closed terms (in the partial order C ) is the Béhm tree of a A-term.

Proof: Il is quite straightforward to sce that there is a recursive function that computes the
label at each node of the lub: if the node occurs at a depth k, it enumerates successively
the Bohm trees of the terms up to a depth k—and it does so in the standard interleaving

manner, that is (informally):

steps in the computation of the tree of term O
step in that of the tree of term 1
steps in that of the tree of term 0

steps in that of the tree of term 1

2
1
3
2
1 step in that of the tree of term 2
4 steps in that of the tree of term O
3 steps in that of the tree of term 1
2 steps in that of the tree of term 2
1

step in that of the tree of term 3

and so on—and till it hits the first tree that has a value for the label of the node. This
must be the label for the node in the lub, since the set is directed. Such a function is
(Turing) computable, and hence must be recursive. Also since all the terms in the set

are closed, the condition on free variables is trivially satisfied.

This result allows us to define the least upper bound of w-directed subsets.
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Definition 8.1.9 For any w-dirccted subset x of some object in fla), we define the least
upper bound as [x] where

x=[lzlzex}

The preceding constructions give us the means by which we may w-complete the Types
and Orders, by adding to them, the least upper bounds of w-directed subsets. The idea is
stated formally.

Definition 8.1.10 For any set X = §[a], we define the w-completion of X, denoted as
Q(X), as follows:

UX) = {[z]|3Ix C X.x # 0/\)( is w-directed /\z =%}

We can easily see that X C Q(X) and that Q(Q(X)) = Q(X). The final idea that we borrow
from the theory of Bohm trees is the following, which we state without proof (which may be

looked up in the reference cited).

Theorem 8.1.11 (5, Corollary 14.3.21]) For any A-contezt C[-], the map defined by the term

Az.C[z] on A, is continuous with respect to the order C.

This is an extremely significant and useful result, and will underlie many of the propositions
in the sequel.
From this process of completion we can proceed to define the internal category of domains,

for which we shall use the symbol L.
Definition 8.1.12 7The micrnal calegory L i w-Set 15 defined as follows:

Lo: The object of objects is given as the w-set:

{(X, (X)) | X € Ao}

(where A is the object of objects of the internal category A) with the realizability re-
lation: n | & n ~ Q, for any | € Lo. Note that this gives us a isomorphism
Q) : Ao = Lo : [a] = ([a),§la))). We shall suppress this isomorphism in the

scquel, whenever s clear from the contert.

Ly: The object of morphisms is given as Ly = Ay where Ay is the object of morphisms of the

internal category A.

The rest of the components, viz., the domain and co-domain maps, and the internal identity

and composition are isomorphic o the corresponding morphisms for the internal category A.
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The relevant components of the internal categories L and A being isomorphic, it follows
immediately that the former satisfies the conditions for being an internal category. It is also
evident that L is a syb-object of Mp; the object of object of the internal category of modest
sets, and in fact that there is a internal inclusion L — M; however, it is also clear that the
former is not a full internal sub-category. In the sequel, we shall use the fact that L is an
internal sub-category of M.

We state two lemmas that are impor'ta,nt for verifying that the category L is internally
cartesian closed. For A = [a] and B =[] in Ao, we shall use the symbols A x B and A = B
for the expressions [Zz : a.8] and [llz : a.8] in Ao.

Lemma 8.1.13 For objects A = [a], B = [8] € Ao, we may assert that

A x 1) = af () x A $(B))
where the latter occurrence of x denotes the cartesian product in MOD.

Proof: Consider any element [(a,b)] € Q(§(A x B)): as may be easily seen, for any such
element, there would exist a w-directed set C = {[(a,,b,)]|i € I, [a,] € §(A), [b] €
$(B)}, for some indexing set I, such that @ = |J;{a.}.er and b = ||;{bi}.es. Since the
sets {a,}ier and {b, },es, are w-directed subsets of §(A) and §(B) respectively, we may
assert that a € Q($(A)) and b € Q($(B)); hence [(a,b)] € ($(A)) x U $(B)).

On the other hand, it’s not difficult to see that any element of Q(§(A)) x Q($(B)) is of
the form [(a,b)] with [a] € Q(§(A)) and [b]) € Q($(B)). We would thus have indexing
sets I, J such that a = | J;{a,},es and b = | |;{b,},es, where the sets {[a,]|i € I} and
{[6,]17 € J} are w-directed in §(A) and §(B) respectively. This gives us the following
(double) lub in Q(§(A x B)): namely, LJ; L, {[(ai,b,)]}; the relevant sets may be seen
to be w-directed in §(A x B) and thus the least upper bound exists in Q(§(A x B));
and hence [(a,b)] € (§(A4 x B)).

Lemma 8.1.14 l'or objects A = [a], BB = [B] € Ao, every clement [f] € Q(§(A = B)) tracks
a morphism Q(§(A)) — Q(§(B)) (in MOD).

Proof: Consider a general element [f] € 2(§(A = B)), given by the condition f = | J{f,|i €
I, f, € §(A = B), for some indexing set I (and the relevant set being w-directed). For
a general element [a] € 2(§(A) given by the condition a = | |{a,|j € J, a, € §(A)}
for some indexing set J (and the relevant set being w-directed), we may represent

the action of the morphism tracked by f on [a] as [);{fa,};es) (by continuity, cf.
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Theorem 8.1.11). Again by continnity, we can write this as the donble lub
Sila) = (S i€t jedy
1 J

and the relevant sets being directed in §(B), the lub exists in $(DB)), and hence the
proposition.

Corollary 8.1.16 For objects A = [a], B = (8] € Aq, if f tracked a morphism §(A) — §(B)
(in MOD), then [ tracks a vald morphism Q(§(A)) — Q($(B)).

We shall use the preceding group of results to establish that certain A-morphisms remain

valid when we reason in the context of L.
We demonstrate now that the category L is internally cartesian closed. The relevant
clauses in the definition use the notion of an internal adjunction (and internal natural trans-

formations) rather heavily and we recall the definition of the former.

Definition 8.1.18 Given internal categories C and D (in some ambient category), and in-
ternal functors I' : C — D and G : D — C, and natural transformations n : idg — GF
and ¢ : idp — FG (where idx denotes the identity functor on the internal category X), we
say that I' is a left adjosnt (7, or G is a right adjomnt to F, or that (F,(i.9),¢) constitutes an

adjunction between C and D if and only if the following commutations obtain.
G2 GFe L4 G =idg
FE roF £ P =idp
where idx, for a internal functor X denotes the identity natural transformation on X, and

the relevant composition of natural transformations is the vertical composition.

With this definition, we claim the subsequent set of results. We shall use a few notational
conventions: objects of L that have been defined to be of the general form (X, (§(X))) for
X = [a] € Ao would be denoted simply as a to keep the notation simple. We would denote
an expression of the form Xz : a.f as a x f and llz: a.f as of. With these conventions, a
typical element of L; may be represented as ((a,f),[f])—meant to represent the (unique)
morphism from o to B tracked by [f] (this follows from the form of the elements of A1); we
would frequently use simply f rather than its equivalence class, and drop the domain and
co-domain components whenever clear from the context. We shall generically denote the
functors constituting an adjunction as F and G (with the former being the left adjoint to
the latter). We would also not be explicit, in the proofs below, about the codes tracking the
particular morphisms that are mentioned: in all cases, the codes are obvious constant terms

and may be easily constructed by the reader.



158 CHAPTER 8. INTERNAL DOMAIN THEORY

Theorem 8.1.17 The (unique) wnternal functor 1y, : L — 1, where 1 is the discrele calegory

on the terminal objeet 1 in w-Set, has an internal right adjoint T : 1 — L.

Proof: We shall take the terminal object 1 as given by the set {x}. This is, of course the
object of objects 1p of the internal category 1; the object of morphisms 1, is given as
the identity id; of the terminal object. The object and morphism parts of the functor

1y, are obvious and we shall not labour the details. The functor T is given as follows:

To: lo—=Lo: *x—Q

T]Z 11—>L|2 ld]Hldn
where idg denotes the internal identity morphism on the object 2 (the A-Type of the
standard unsolvable term). The conditions of functoriality may be easily verified. The

natural transformations 7 : idp, —» GF and € : FG — id; (with F=1p and G=T)

are given as the morphisms

n: Lo— Li: aw ((e,9),A2.92)

€: lg— 1] IS Hlnd id1
respectively, and the conditions for a natural transformation may be easily verified. We
explicate the following compositions:

Fnp=Kon: Lo—=1: arid

eF=¢coFy: Log—1;: ar—id

G =70Gp: lo— Ly: xw—idg

Ge=Groe: lg— Ly: %+ idg
where we have used idg to denote the L,-element representing the identity on the object
Q. With these the relevant identities may be verified

(el')o(Fn) : awidyoid; =id;

(Ge)o(nG) : x+—idgoidg =idg

and hence the proposition.

We would claim, next, that the category L has internal cartesian products. This property
too is framed in terms of an internal right adjunction. We have the notion of an internal

product category L xL: its object of objects is predictably Lo X Lo, while that of its morphisms
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is L1 x L1; the product of internal categories is defined exactly in the same way as the
product of “external” categorics. "I'he rest of the components of L x L follow easily from this
consideration and we shall not labour the details. We have the internal diagonal functor, -
A:L — L x L: we can verify its components given below.

Ao: Lo— Lox Lo: aw (a,a)

Ar: L= Lix Lz ((0,8),[1]) = (((«,8),[/]), ({e, B), 1))
We shall drop the annotations of domain and co-domain whenever clear from the context.

We have the main result.

Theorem 8.1.18 The internal diagonal functor A : L — L x L has an nternal right adjoint
v.

Proof: The functor V is given as follows:
Vo: Lox Log— Lo: (a,8)— axf
Vit LixLy—Li: (((@BL U (r.6),lg)) =
(e x 7,8 x 8, Az fro(z), gma (=)

The conditions of functoriality may be easily verified. The relevant morphisms may be
seen to be well-defined on the basis of Lemma 8.1.13 and Corollary 8.1.15: this would
also be the case for the morphisms defined subsequently, and we shall take this as a
general condition entailing validity without mentioning it explicitly every time. The
natural transformations 7 :idy, = GF and ¢ : FG = idpxy (with "= A and G = V)

are given as the morphisms
n: Lo— Ly: a— ((a,a x a),[Az.(z,z)])
€: 1Lox Lo— Li X Ly: {(&,8) = ({{a x B,a),m),{{a x B,8),71))
respectively, and the conditions for a natural transformation may be easily verified. We
explicate the following compositions:
Fp=Fon : am (((a,axa),[Az(z,z)]),((a,a x a),[Az(z,z)]))
eF=coFy : ar (({axa,a),m)((axa,a),m))
NG =n0Go : {aB)— ((ax B (axp)x(axB) e (z,2)
Ge=Groe : (a,f)— (((axB)x(axf)ax B),[Az.(momo(z), mami(z))))
With these the relevant identities may be verified
(eF)o(Fn) : awidy (8.1)
(Ge)o(nG) : (axB)r idaxp (8.2)
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where Equation 8.1 follows from the fact:
(mpo Az.(z,z))(a) = a
for any [a] € e; and Equation 8.2 from the fact:

(Az.(momo(z), mymy(2)) 0 Az.(2,2))(a,b)
= (Az.(momo(z), mm(z)))({(a,b),(a,b)))
= (a,b)

for any [(a,b)] € a x . Hence the proposition.

In the next and final result, we shall claim that the category L has exponents: the
definition, as earlier, is couched in terms of an internal right adjoint. We recall that |Lo|
denotes the discrete (internal) category defined on Lg, the object of objects of L. This
category has Lo as both the object of objects and the object of morphisms. The internal
identity is then simply the identity id,, which is obviously an isomorphism. We have the
product category |Lo| X L, and we shall denote it as x. We have the (internal) functor
P : x — x defined as follows:

Po: xo—= xo0: (a,f)~ (a,axf)

Prioxa = xa: ((lasa) 1), ((B,y), (/1) =
(({a,@), 1), {(a x B, x 7),[Az.(mo(z), fr1(z))]))
The conditions of functoriality may be easily verified. The relevant morphisms may be seen
to be well-defined on the basis of Lemma 8.1.13 and Corollary 8.1.15 as before. We have the

main result.
Theorem 8.1.19 The internal functor P : x — x has an (internal) right adjoint E.
Proof: The functor E is given as follows:

Eo: xo— xo0: (&7)+ (a,a7)

Ei: xi—=xa: (((ea), 1), (B (/D) = (@, @), 1), ((B%, %), [Anz. f(n(2))])

The conditions of functoriality may be easily verified. The relevant morphisms may
be seen to be well-defined on the basis of Lemma 8.1.13, Lemma 8.1.14 and Corol-
lary 8.1.15, as earlier. The natural transformations 7 : idy = GF and € : FG = idy

(with F = P and G = F) arc given as the morphisms

7 xo—x1: (ef) = (({e,@),1),((B,(a x B)°),[Azy.(y,2)]))

ct xo—=x1t (7)== (({a,@), 1), ((a x 17,7),ev))
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respectively, where ev is the evaluation combinator, tracked by Az.(7y(7))(7a(z)). The

conditions for a natural transformation may be easily verified. We explicate the follow-
ing compositions:
Fn="Fon : (a8)~ (({a,a),1),((a x B,a x (a x §)),[g]))
where g = Az.(mo(2), fmy(2)) with f = Azy.(y,z)
cF'=coky i (a,)r (({a,a), 1), ((a x (a X B, x B),ev))
nG=noGo : (&) (({a,a),1),((8°,(a x f)),[Azy.(y, 2)]))
Ge=Groe : (a,f) = (((a,a),1),((( x B)7, %), [Anz.ev(n(z))]))

With these the relevant identities may be verified

(eF)o(Fn) : (@ f) = id(y o x g) (8.3)
(G)o(nG) = (axp)r—idig gay (8.4)

where Equation 8.3 follows from the fact:

(ev o g)(a,b) ev((a, Ay.(y,b)))
(Ay-(y,b))a

(a,8)

for any [(a,b)] € @ x B; and Equation 8.4 from the fact:

(Anz.ev(n(z)) o Azy.(y,2))f
(Azy.(y,2))(Ay-(y, f))
Ar(Az.(my(2))(mo(x)))((Ay-(y, [))(z))
= Az.fz

> f

for any [f] € 82, and hence the proposition.

Theorems 8.1.17, 8.1.18 and 8.1.19 yicld that L is an internal cartesian closed category,
and thus epitomizes the program we have been developing. It generalizes the analogous
condition for the Heyting semantics of propositions, which gave us a Heyting-algebra object
as the object of its Tarskian semantics. However, we may still note that the internal category
L is a fairly impoverished object. For one, it is not a full internal sub-category of MOD:

thus, the computation of its limit properties would be quite a complex matter, as the proofs
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of the last three theorems would have shown. Second, it is far from complete as an internal
category: that too diminishes the serious possibility of its functioning as an internal category
of domains, capable of yielding solutions of recursive domain equations. Third, the category
is really one of dcpos and not of domains: many of its objects do not have a bottom element,
and that limits its potential for yielding unitary solutions of functions defined by recursion
at all Types. Finally, it loses the rich fibered structure of the Types: in fact, such a structure
would have been preserved under the completion if the following property could have been
shown to hold.

Property 8.1.20 If in §[Xz : a.B] there is a directed set
((anb)]li € Ia, € f[a],b. € f{ﬂ(a./z)]}
and (a,b) = | {(a,,b,) |i € I}, then [a] € §la] and [b] € §[B(d/z)).

This property is violated principally by the product Types, which in fact, are the ones that
lack a bottom element. Of course, we would expect that there would be a loss of information—
and thereby of structure—in the transition to denotations; and fiberwise structure would
predictably be a casualty in this process. Yet, the deficiency in respect of the first three
points listed above does limit the theoretical significance of the construction—especially with
regard to the possibility that the latter might be a concrete instance of a canonical category
of domains in the topos that we would describe in the next section (the replete objects).
Perhaps this indicates that some more sophisticated form of completion is needed to yield

the desired properties, and this is a matter for further investigation.

8.2 Towards a Synthetic Theory

Perhaps the most challenging question in the last two and a half decades of formal semantics,
has been the possibility of treating the domains of the denotations of programming languages
as sets, with full function spaces. Perhaps this makes more sense to a logician than to a
computer scientist, but the advantages of being able to reasoning about (the semantics) of
Programming language Types, using standard (perhaps intuitionistic, higher-order) logic is
undeniable. We have remarked upon the impossibility of being able to do this in the classical
universe of sets; the resolution was, as we have seen, embedding the theory (category) within
a non-standard (intuitionistic) universe—which essentially meant an elementary Topos—
usually through a pre-sheaf construction (cf. [74, 62]). The outcome was in general, an

internal category in the Topos, with enough completeness to support the standard Type
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constructions. A lacuna in this approach was the systematic exploration of the properties
of such internal categories, especially with a view to supporting the standard constructions
within programming language semantics. For instance, it was known that cartesian closed
categories, having fix-points of endomorphisms and equalizers, were degenerate. Hence, it
was important to demonstrate the viability of such basic semantic constructions within the
internal categories obtained by the general method.

At this juncture, a need was felt to formulate this general programm within an axiomatic
framework: that is, systematically build up the theory of a (complete) category of domains,
internal to a Topos. The suggestions had already made by Scott, and taken up by Hyland, to
have theory of Domains formulated completely and axiomatically within the internal language
of a Topos. As we have indicated earlier, the minimal requirement of such a theory was to
support the fix-points of functions, and the limit-colimit coincidence structure for the solution
of recursive domain equations ([80]). Rosolini ({68, 67)) and Mulry ([54]) constructed most
of the initial scaffolding: the basic abstraction was the concept of a partial map classifier
within a Topos, and of a classifier of recursively enumerable sub-objects. Such a class of
sub-objects could provide the basic topology, the specialization order (or the intrinsic order)
with respect to which could give us the basic (pre-) domains. There were alternative ways
to look at this which would not emphasize the intrinsic order, but start with some other
basic considerations relating to the structure of the recursively enumerable sub-objects (for
instance, the “external” inclusion order amongst such sub-objects). The great virtue of
this general technique was that it gathered into a single general framework the notions of
continuity and effectivity that had been known for almost three decades to be foundational
to the concept of computability: and this framework was a priori in that it invoked no ad
hoc notion of codings or Godel numberings.

The essential consideration in all the variants of this theory was the concept of a partla.l
maps within a Topos, and a classifier of the sub-objects of the domains of such partial maps,
which could be thought of (in a suitably qualified sense) as computable. Since the development
of this thesis draws to an end, we shall have to abbreviate our account to simply providing
a sketch of the foundational notions on which this theory can be developed, and situate the
constructions of the previous section in its context. As we just mentioned, the cornerstone of
the theory is the notion of a classifier £ of the domains of those partial maps in the Topos,
that we would like to consider as computable. Recall that in the external universe, the
domains of general recursive functions are precisely the recursively enumerable sets. Hence
the classifier & could be thought of as the classifier of recursively enumerable sub-objects.

Certain general considerations on the nature of the computable maps give us the basic axioms
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which we would have this object obey (cf. [86, 35]). A significant principle is that it should
be, in fact, a sub-object of the usual sub-object classifier 2 of the Topos. llence ¥ should be
thought of as the object of “computable” truth-values. We elucidate the basic axiom upon
which we base the object ¥ below. It is essentially an adaptation from Hyland’s essay ([35])

on the topic.

Axiom 8.2.1 We have a sub-object £ of, the (usual) sub-object classifier Q, equipped with
the sub-object T : 1 — L. The pullbacks of arbitrary maps f: X — ¥ along T are called the
L-subsets (denoted by the symbol Cx); we assume that T is a generic X-subset, in the sense
that every T-subset [ of an object X, is obtained by pulling back an unique (classifying) map
f:X — Z along T. We would also require that A Cy B and B Cy C implies A Cy C.

A number of consequences follow from this axiom: those significant for our purpose are:
1. for any object X', we have that X Cy X,
2. the pullback of a X-subset is a X-subset, and
3. the collection of L-subsets of an objcct is closed under finite intersection.

The actual theory goes on to posit a number of other axioms, some of which we shall mention
as and when required.

The conditions of Axiom 8.2.1 are usually presented in a form convenient for reasoning
in the internal logic. The first and last conditions of the axiom are summed up in an internal

logic statement which we present below.

T e T (8.5)
peXAlp=T)=>@1@eL) = (pPAgex (8:6)

An object with these properties is known as a dominance ([68]). A number of such objects
have been used in the study of internal domains. We mention one due to Rosolini ([68]),

existing within the Effective Topos and defined by the follawing internal language statement.
S={peR|If:NV(p& In:N.f(n)=10))

Note that it is defined a priori as a sub-object of Q.
We shall use two different kinds of dominances in this section. The first one is due to
Phoa ([58]), and we demonstrate how we may use it in a farly straightforward manner to

“secure” the partial order on the objects of our category L.
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Definition 8.2.2 The object ¥ 15 defined to be the modest set having as its underlying set
{7, L1} with T realized by the set {I} and L by the set {2} (where @ = [(Az.zz)(Az.22)]5).

The first step in establishing this as a dominance would be to formulate its definition as a sub-

object of §2, the sub-object classifier. The reader may verify, that ¥ as defined is (isomorphic
to) the following sub-object of Q.

{reIzer(-pe(z= AP & (z=92)))

The actual proof that this object is indeed a dominance is quite complicated and we refer

the reader to [60] for the details.

Given a sub-object of £ that is a dominance, we may take the sub-objects (of any object)
classified by it, as a set of recursively enumerable predicates, and define on their basis an
(intrinsic) pre-order on the object X. In very much the same fashion that a specialization

order is defined in a Topology, we have the following definition.
Definition 8.2.3 For any object X in the Topos R, and z,y € X, we write:
T <y Vo X 4(z) = d(y)

This can be easily seen to be a pre-order. We would of course be interested in those objects
for which this is a partial order. Such objects are knouwn as £-spaces, and may be defined as

an object satisfying the following statement.
The natural map X — 2= isa mono,

or equivalently
Va,y: X.(Vo: ZX g(z) & d(y)) >z =y

Paul Taylor calls this the Weak Leibnitz principle, which essentially asserts that any pair of
elements which satisfy the same set of recursively enumerable properties, are in fact the same
([86)).

The dominance defined in Definition 8.2.2 would not be very useful, but it is instructive

to see exactly why not.

Theorem 8.2.4 For every object @ € L the relation < is entailed by the internal order <.

Proof: We know that a is (essentially) a modest set; consider any map ¢ : & — X: since
both domain and co-domain are modest sets, this is essentially a map in PER. Suppose

it is tracked by the code f—which is the same thing as saying that f realizes that the
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functional relation representing ¢ is total. Consider any elements [a] < [b] € a: From
the definition of maps in PER we know that for all z € [a], (f - z) F ¢([a]). Now if
for any z € [a],Jf - z) = I we would have that for any y € [b], (f - y) = I—since we
have that for any context C[-], if C[a] is solvable, then so is C[b}, (and in fact both have
the same head normal form; c¢f. Proposition 8.1.3). Hence we have that for any map
¢:a— I, ¢([a]) = #([b]); and thus

(o] < [b] = [a] <« [b]

which is our proposition. Note that the converse may not hold, since the space of
morphisms ¢ : @ — £ would in general be (properly) contained in the space of all
A-contexts, and it is precisely for this reason too that we may not assert that the <«

pre-order is an order.

lence, we would be justified in looking around for a dominance with respect to which we
would have in L, a category of E-spaces. In the next series of definitions we work towards such
an object. We shall denote by the symbol o, the unary predicate of solvability on the object
X. Recall that a term is solvable if and only if it has a head normal form, or equivalently, if
the head reduction sequence of the term terminates. There is an effective procedure (i.e. a
partial Turing computable function) for this, which terminates if the term has a (principal)
head normal form, and diverges otherwise. Hence we may assert that the solvability predicate

is recursively enumerable. We make the following claim.

Lemma 8.2.5 The binary predicate &([z],[y]) on X, defined by the statement

5([z), ) & a(l=]) A o((w])

is recursively enumerable. Hence there is a A\-term 9 such that ¥ -(z,y) is solvable if and only

if  and y are both solvable.

Proof: This is fairly straightforward. Given the partial Turing computable function for o,
we simply run it first on z and then, if it terminates, on y. This gives us the required
partial Turing computable function—call it f—and demonstrates that & is recursively
enumerable. But then, by the equivalence of (partial) Turing computable functions,
and the functions encoded as A-terms, we would have a A-term ¥ which computes the

same function f. Hence the proposition.

We shall write 9(z,y) for the term 9 - (z,y), and confuse terms with their $-equivalence

classes in the sequel. Hence, by the result above we have that

E o(d(z,y)) & o(z) A a(y) (8.7)
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for arbitrary elements z, y in A.

Definition 8.2.6 We shall denote by X, the quotient of the object X by the equivalence rela-
tion ~. We define the following sub-object of the classifier 2.

L={peR|3X € \(p & 3z € X.0(z))}

Note that X, in the context of this definition is a (closed) sub-object of the object A of $:
the latter is an object which has the underlying set A, and with the equality defined by

[m=n]={ {m} ifm=n

0 otherwise

where m,n € A; thus X inherits this equality from X. This remark is important for the
application of the axiom of countable choice in Theorem 8.2.7 below. We claim that T is a

dominance.
Theorem 8.2.7 The object ¥ defined in Definition 8.2.6 above, is a dominance.

Proof: Let us establish the validity of the two defining properties of a dominance set out in
Equations 8.5 and 8.6. First, we may set T to be the specified element [I]~ of X. This
would secure us our first property. As for the second we have the following argument
in the internal logic. Suppose p € £: this means that for some X, an equivalence class
in A, we have that p < 3z € X.0(z). Now the clause (p = T) = (¢ € L) translates as

the (internal logic) statement:

3z € X.o(z) = 3IY € A (g & Iy e Y.o(y) (88)
& vz € X.3Y € A(o(z) = (¢ & Jy € Y.o(y)))
since o(z) is (semi-) decidable
& Vz € X.(o(z) = (¢ & 3y € K(z).0(y)))
using the axiom of countable choice for a choice function k: X — X

hence, (PAq) « 3z € X3y € r(z).0(z)Ao(y) (8.9)

Now note that both X and A are modest sets; hence we may take the function x : X — X
as essentially one between PERs. Let it be tracked by the code f (as before, this is the
same as saying that f realizes the predicate that the functional relation representing &
is total). From the modest set structure of the domain and co-domain—namely that

any z € X is realized by the set {z} and any equivalence class Y € X is realized by
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the set of all the codes in ¥ we have that Vz € X.(f - z) € k(). Consider the set 2’
defined as follows:
Z' = {d(z,y)|z € X, y € K(z)} (8.10)

~

we claim that any pair 9(z,y), 9(z',y’) € Z’ are in the equivalence relation ~. We have
y

the following argument. Consider any context C[:]; we have that

o(Cl3(=, 1))
= o(C[¥(z,f -z)]) sincey~f-z
= o(C[d(z’,f-z)]) sincez ~z’
= o(C[¥(z',f -2')]) since (z~2')= (f-z~f-2')
= o(C[¥(z',y")]) sincey' ~ f-2'
and by symmetry of the argument the claim is established. Now define Z to be the

closure of Z’ under the equivalence relation ~: that is, Z is defined by the following

internal language comprehension scheme.
Z = {z € M| 32’ € 2'.YC[). o(C[2]) « o(C[2'])}
Now we claim the following.
(3z € X3y € n(z).a(z)/\a(y)) & 3z€ Z.0(2)

The argument in the direction = is obvious (recall Equation 8.7). The other way is

also straightforward: by the definition of Z we have

Jz € Z.o(z2)
= 32 € 2'.0(2")
= 3z € X.3y € k(z).0(I(z,y)) cf. Equation 8.10
= 3z € X.3y € s(z).0(z) Ao(y) cf. Equation 8.7

and hence the claim. Thus we have from Equation 8.9 that
p/\qﬁ Jz€ Z.0(2)
with Z € A, and henee (pAg) € V.

We shall see that taking T as our dominance, allows us to derive some significant canonical

properties of our category L. In fact, £ has some interesting features apparent prima facie.
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It is a sub-object of the classilier §2, containing the distinguished element 1 which we have
defined as [/].; it has a bottom element L which is essentially the empty set @ corresponding
to the =~ equivalence class of all unsolvable terms. In fact ¥ is a modest set, and isomorphic’

to the modest sct A: we may make its modest presentation explicit as follows

forpe L suchthat 3IX ed.(pe Iz e X.o(z))

we have z F p = zeX

and obviously 0 is realized by the set of unsolvable terms. Also, ¥ has a pleasing relation to
the objects of L: namely, every object of the category is a sub-object of ¥. We shall see that

this has important consequences for L. We note another significant fact in the next lemma.

Lemma 8.2.8 For any code [f] € X, and for any X € L, there is a morphism ¢ : X — I
tracked by f.

Proof: We have abused the language in the statement of the lemma, in implicitly considering
a R-morphism between any X € L as equivalent to one between the corresponding
PERs. A more precise statement would be that any code f realizes the totality condition
on the functional relation representing some morphism between any X € L and . We
shall go by the abused version since it simplifies the proof. Consider any code f, and
any X as before. We know that for any z,y € A, z ~ y implies that (f - z) >~ (f-y):
hence, we define the map ¢ as follows: ¢ : [a] — p where p & Iy € Y.o(y) with
Y = [f-a)~. it requires a slight re-formulation to write this in terms of a functional

relation in R and we leave that to the reader.

With this we would not have much difficulty in establishing the fact that with respect to £,

we have in L, a category of Z-spaces.

Theorem 8.2.9 Any object in the category L is a £-space, with the internal order X coin-

ciding with the intrinsic order &.

Proof: Consider any X € L; since both X and ¥ are modest sets, we shall consider maps
in R between as between PERs. Suppose for [a],[b] € X, and all ¢ : X — E, we have
#([a]) = ¢([b]); by Lemma 8.2.8, this implies that Vf € A.(f - a) = (f - b) which means
that for all contexts C[], Cla] = C[b], which is to say that @ = b or that {a} = [b]. Nence
X is a L-space.

As for the coincidence of the orders, note that <=< is easy: since if (a] < (8] then for

any code f, il f-a is solvable then sois f-b. Hence for any ¢ : X — I, ¢([a]) = ([b])-
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For the converse, suppose we have that V¢ : X — £.4([a]) = #([b]). By Lemma 8.2.8,
this would mean that for any code f (and thus, for any context C[-]), if f-a (respectively
C[a]) is solvable, then so is f-b (respectively C[b]); but this is precisely to say that a < b
or that [a] < [8]. Hence the proposition.

Thus the choice of the dominance is extremely important in establishing the desired properties
of our category.

In the last part of this section, we shall touch briefly upon a canonical property that the
category L exhibits. A comprehensive discussion on the precise significance of this canonical
property is beyond the scope of this thesis: that would require too deep an excursion into
Topos theory. We shall merely indicate that our category satisfies this property and hence
is, in some sense, canonical.

Over the last few years of research into the topic of internal domain theory, there has
emerged some agreement upon the internal category of domains that one would like to con-
sider as canonical, and that, in some sense has the greatest theoretical economy. We have
scen that our category satisfies the property of being a -space, and is complete with respect
to countable sequences increasing with respect to the intrinsic order. Such things were called
complete T-spaces by Phoa ([58, 59]), and considered as an appropriate category of domains.
Likewise Freyd et al considered a class of objects known as eztensional PERs, as an appro-
priate category of domains ([22]). A common concept emerges in Taylor ([86]) and Hyland
([35]) about such a category. As the latter remarks, two considerations should inform the
choice of the appropriate category: first, that we should generalize the weak Leibnitz princi-
ple to (semi-decidable) properties (a precise statement of this would be given in the sequel);
and second, that the category should have “sufficient” internal completeness to handle the
standard semantics of constructive Types. Hyland demonstrates that both considerations
converge on a single characterization: namely that of the category of replete objects, which
is the least internally full reflective sub-category (of the Topos) which contains the object .

As we have said, a precise formulation of this theory is beyond the scope of this work. We
shall merely indicate a few of the principles underlying its development. The generalization
of the weak Leibnitz principle mentioned above, takes the following form, which we excerpt
from Taylor ([86)).

Definition 8.2.10 (The Strong Leibnitz Principle) If a morphism p: X — Y induces
a btjection between scmi-decidable predicates, with Y satisfying the weak Leibnitz principle,

then p is an isomorphism.

lience, as Hyland remarks, this principle essentially ordains that objects are determined by
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their X-sub-objects. The precise definition of the category of such objects can be arrived at
in different ways. ‘Taylor considers a kind of a epi-mono factorization of the natural map

X .
ex : X — EX7, to arrive at a characterization. We shall use Hyland’s definition ([35)).

Definition 8.2.11 A map g : P — Q is said to be -equable if the induced map § : £9 — TP
is an isomorphism. A map f : A — B is said to be E-replete if for any E-equable map
g: P — Q, the (induced) diagram in Figure 8-1 1s a pullback. The internal full sub-category

AQ AP

Be BP
Figure 8-1: E-replete Morphisms.

of all objects A such that the unique map A — 1 is X-replete, 1s known as a category of replete
objects. We shall say that any object A for which the map A — 1 is E-replete, satisfies the

repleteness condition.

In the internal logic, and as set out in [35), this characterization assumes the following in-
tuitive form: replete objects are objects A, such that for any Z-equable map P — Q, every
commutative square of the form shown in Figure 8-2 has an unique diagonal fill-in s : @ — A.
We shall use this characterization and show that our category L is a sub-category of the in-
ternal category of replete objects. We note the following fact about the map f:29 %P

induced from an arbitrary map f: P — Q.

Lemma 8.2.12 For the canonical map f : 89 - TP induced by a map [ : P — Q, we have,

in the internal logic
EVH:29.VG: 2P f(H)=G=>G=HoF

where we use f(H) = G as an abbreviation for fi1,G) =T, [f] being the functional relation

representing f, and the formula G = H o F stands for

Vp: PVs:X.G(p,s) & 3q: Q-F(P.II)/\ H(q,s)
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p S Q

A 14 1
Figure 8-2: Replete Objects.

where upper-case letters denote the functional relations representing the corresponding mor-

phisms in lower-case.

Proof: In the internal logic, the situation is pretty much as in the category of Sets. We
sketch the argument in the internal logic; the basic validities used in the proof can be
checked up in [37). We note first the structure of the exponent £9: as set out in [37),
it has the general structure of exponents in the Realizability Topos, which has the set

of maps homge(Q X T,2) as its underlying set, with equality defined as follows:
[F=F]
(F=G]

It

[‘F is a functional relation’]

[EF/\EG'/\Vq 1 QVs: £.(F(q,8) & G(g,9))]

We shall use lower-case letters to denote morphisms, and (corresponding) upper-case
letters or enclosing square brackets to denote the representing functional relations. Since
we have a map f: P — Q, we have a map (id, ) : 9 x P — £2 x Q, for which, in
the internal logic

EVH :29.Ype P.YH' : TP .¥g : Q. ((id, N)(H,p),(H',q)) & H = H' \ F(p,q)

Composing with the canonical evaluation morphism ¢ : £9 x @ — £ we have eo (id, f) :

£9 x P — £, for which we have the validity
EVH:29.Yp e P.Vs: E.[(co (id, /))((H,p),s) &
3H':£9.3¢: Q. [(id, N(H, p), (H',0)) \ H'(,5) (8.11)

Now for any map j : A x B — C we have the exponential transpose j* : A — CB, for

which we have the validity

EVae AYF:CB.J*(a,F) = (Vb: BNc: C.F(b,c) & J((a,b),c))
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Hence, taking the transposc of the map e o (id, f), we have the validity

VI X996 8 ((co (id, £))')(11,G) =
(Vp: P.¥s: X.G(p,s) 4 [co (id, N))((H, p), s))

But then, from Equation 8.11 we have that

VH :£9.¥p € P.¥s : S.[co (id, f)]((H,p), s)
A 311’=E°-3q:Q~[(id,f)]((H,p),(H’,q))/\H'(q.s)
& 3H':£9.3¢:Q.H = H' A\ F(p,q) \ H'(q,9) (8.12)
& 39:Q.F(p,q) ]\ H(g,3) (8.13)

where the last statement can be seen to hold on the following grounds: the implication
8.12 = 8.13 follows from the definition of = on the object £9; the converse implication
follows from the fact that F H = H' = EH A\ EH' by the same definition. Thus we

have:

EVH :29.9G : =P [(e o (id, /))*)(H,G) =
(Vp: P.Vs:5.G(p,s) & 3¢: Q. F(p,9) \ H(4,9))

But the transpose is precisely the functional relation representing f; hence the propo-

sition.

We also note that any object of the internal category L is a sub-object of the object £, and
hence that any morphism ! : P — A, from an arbitrary object P to an object A € L can be

considered as a map !’ : P — L. We state this formally.

Lemma 8.2.13 Any object A € L is a sub-object of the object X, and hence, for any mor-
phism f : P — A from an arbitrary object P, we have a corresponding (unique) morphism

tof:P — %, where1: A >> X, 1s the obvious monuc.

Proof: Considering both A € L and T as modest sets, we can easily see that A is a sub-
object of T; we have the monic ¢ : A>—» £, which has the following description: for
any element X of A, realized by the class [z]~ of codes, we have that «(X) = p where
p = Jy € [z]~.0(y) (we have confused descriptions of morphisms in PER with those
between modest sets). This can be easily seen to be a monic. Now any morphism
f:P — A, extends toto f : P — £ and the property of monics tells us that if, for any

g: P — A, we have to f = tog, then we would have that f = g. Hence the uniqueness

of the extension.
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Remark 8.2.14 By virtue of this proposition, we would, in the sequel, confuse mapsl: P —
A (with A € L, and P arbitrary), with the map tol: P — X.

Theorem 8.2.15 Ev;ry object in the (internal) category L satisfies the repleteness condition.

Proof: We refer to Figure 8-2, and consider any T-equable map f : P — @, and commutative
square comprising maps ! : P — A, m : Q — 1 and 14 : A — 1. We define a map
§5:Q x A — Q (note that this is a morphism in the category of Sets, and not in the
Topos R) by the following statement:

ls(qva)] =[3Ip € P. F(p, q)/\ L(p,a)]

where we have used the letters F' and L to denote the functional relations representing
the morphisms f and [ respectively. We claim that the map S is a functional relation,

and verify the defining properties.
.

Relational: From the relationality of the functional relations F' and L we have the

following validities.

F((p.e) Na=d = F((p,q')
Lma)Na=d = L((pa')
whence,
Sg.a)) ANa=d¢ Na=d = S(d,e))

Strict: From the strictness of I’ and I we have the following validities.

F((p.q)) = Ep/\Eq
L({(p,q)) = Ep/\Ea

whence,

S((g,a)) > Eq/\Ea

Single-valued: We shall need the I-equableness of f to prove this. Suppose we have
that S(q,a) = T A S(g,¢’) = T; then we could have two possibilities:
Case F(p,q) A\ L(p,a) A L(p,a’): then, from the single-valuedness of L we would
immediately have a = a’, proving the proposition.
Case F(p, ) AF(',q) A L(p,a) A L(p',a’): from Lemma 8.2.13, we may confuse
the map [ : P — A with the map tol: P — I. From the I-equableness of
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f: P — @Q we have a bijection f 1) RN P, let L be the image of i under
this bijection—that is, f/(H) = L in the notation of Lemma 8.2.12. We have

from Lemma 8.2.12 and arguing in the internal logic,

Fin,d)\NH (', a) \F(¥',q") \ H(¢",a)

for elements ¢',q” € Q; but then, from the hypothesis, and single-valuedness
of F we would have that ¢ = ¢’ = ¢"; relationality of H would yield us
H(g,e)\ H(g,a') and single-valuedness a = a'.

Total: We claim (in the meta-theory) that for every ¢ € Q, such that | Eq, there
is some p € P such that F(p,q) = T. Now suppose our claim is false. Let
us designate by g, the element of Q, such that there exists no p € P such that
F(p,q) = T. Let a denote a specified element of ; define a functional relation
H:Q x X — N as follows:

T ifz=gq

® otherwise

H(z,a) = {

The bijection f must assign some element G € £P to H, and we would have
from Lemma 8.2.12 that G = H o F as cxplicated in the Lemma. But then
looking at the formulae defining composition, and the definition of }{ we see that
Vp: P.Vs: X.G(p,s) = 0, which violates the condition of Totality: thus G cannot
be a functional relation; but then, if f(#) = G then we must have that EG which
means that G must be a functional relation. Thus we have a contradiction, which
implies the premise cannot be true. Thus our claim stands vindicated. Now we

claim the following validity:
= Eq = 3a:A. 5(q,a)

for which the realizer is the code Az.y where y realizes |5 Ep = 3a : A. L(p,a),
and p is an element such that F(p,q) = T.

This completes the argument that S is a functional relation. As for uniqueness, suppose
we had another fill-in represented by the functional relation §'. From the commutation
condition, and the fact that f is surjective, we would have the proposition. More
explicitly, we have the following logic (in the metatheory). First note that for any
g € Q for which there is some p € P such that F(p,q) = T, we must have that

S(g,a) = T = S'(q,a) where a is an clement of A, such that L(p,a) = T. This holds
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because both § and S’ are fill-ins. But we have argued above that for every ¢ € Q there
is some p € P such that F(p,q) = T. Hence we have, that Vg € Q.Va € A. 5(q,a) =
T & S5'(g,a) = T. From this it is easy to claim the validity

F 5(g,a) & S'(g,0)
for which the realizer is simply the (code for the) identity.

Hence our category L is a sub-category of the category of replete objects relative to the
dominance E—which is itself not an object of this category. With this thought, we conclude
this chapter, leaving to the Conclusion, the reflections and conjectures on the results thus

far.



Chapter 9

Conclusion

If there is in the history of semantics, any one concept which can be made out, even if in-
distinctly, to be at the back of every epochal moment, it is the concept of structure. To my
understanding, the greatest insight in Frege’s philosophy was that the analytical theory of
meaning can proceed rigorously only on the basis of an adequate conception of structure: it
was only thus that the former may attain a completely objective status. The theory of mean-
ing has a history to the precise extent that the notion of structure was never determinately
conceived. Much of the intellectual ferment around the theory of truth—and subsequently,
the extensional theories of meaning—was founded in an unnecessary mistrust of Frege’s per-
ceived intensionalism. If it was true that Frege’s theory was intensionalist—which it was—it
was equally true that intensions were never meant to be mysterious “internal” objects: they
were conceived in the first place as completely analytical and objectively presented entities.
The lacuna was that they were never thus presented, and from that, truth-theorists decided
to do away completely with them. We have scen that a fortiori such a theory may never be
complete: the burden may only be shifted to a meta-language, and the resulting theory estab-
lishes application only through the declaration as illegitimate of an entire class of perfectly
meaningful expressions (semantic paradoxes).

It is only in the latter half of this century, that the notion of structure revealed an opening
from another direction: namely, the concept of information. The general insight, available
across a number of disciplines, was that entities were informative to the extent that they were
structured, and that the information content of such entities was amenable to formal analysis;
a number of measures of information were formulated at varying levels of abstraction and
from diverse theoretical perspectives. In the specific context of formal semantics, seminal
abstractions came from within Intuitionism. The first was the formulation of intuitionistic

validity in terms of sheaf interpretations of higher-order logic ([45, 87, 28, 19]); the second
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was the theory of constructive proofs of A. Heyting ([87, 27]). The essential insight in the first
was that the information content of objects was only incompletely represented in their global
elements (corresponding to complete evaluations); in general, local sections (corresponding
to partial eva.luations)\had to be taken into account. The essential insight in the second was
that information embedded in the structure of expressions could be represented in the class
of its proofs—that is, transformations and analyses according to the inference rules of the
language; moreover, such information could be extracted as effective procedure provided the
rules of inference were formulated in a certain finitistic (and effective) way.

The essay into constructive semantics in this dissertation is animated by the perception
that a truly general semantic framework should take every linguistic system (formal or oth-
erwise) as its field; and that such a framework should be formulated as an abstract theory of
information. The question was whether constructive type theory could furnish such an ab-
stract and general framework. The scope of this question extends considerably beyond what
can be, and has been attempted within this thesis: in the general context of the question,
it should be viewed perhaps as a prolegomenon. As stated in the introduction, it initiates a
certain application of an available theory, and argues for the validity of the generalization.
The argument accepted, its success as a sufficiently foundational framework has to be judged
on the ground of the necessity of its logic—the extent to which its basic constructs are free
from the ad hoc. We are perfectly aware that all the information constituting scmantics is
contained within syntax: the point is how economically the redundancies of the latter—what
Girard characterizes as “taxonomy” ([25])—are factored out. It is here that the inherent
limitations of the constructive paradigm become apparent.

The ad hoc appears at several points in the construction of our CC-Category in Chapter 6.
The syntax of the Types and Orders is almost trivially induced from that of the basic ‘I'heory
of Constructions. The intimate relation with the w-Sets and the PER model is practically
forced on to the constructions—the requirement of having a name for every w-Set morphism
in the syntax being a particularly awkward technical symptom—and the justification for this
can only be provided a posteriori. Moreover, the Types are constructed so as to correspond to
equivalence classes of terms: this is a choice forced by the formalism and while semantically
equivalent terms should have isomorphic Types (as argued in the Introduction) this should
be a conclusion of the theory and not an initial choice. Finally, the Types of the pure A-
terms form only a small part of the induced theory—even if we ignore the sums and products
representing quantification over Orders; the sum and product Types do not, in general,

correspond to the Type of any A-term. This is a significant divergence from the propositional
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These are symptomatic, perhaps, of a certain hesitation in the formulation of constructive
type theory itself. As pointed out by Girard ([25]), the intuitionistic sequent calculus sup-
presses the basic symmetries of logic: it forbids weakening and contraction on the right-hand
side of sequents (intuitionistic sequents may have only a single formula on the right). The
logical extension of this is to restore the arity of sequents, but forbid weakening and contrac-
tion throughout—and this gives us Linear Logic. At a deeper level, we perceive the lack of a
relation between the two critical abstractions within the Intuitionistic thinking on semantics
stated earlier: the concept of partiality and the pre-eminence of local notions fundamental
to the conception of sheaf semantics, seems difficult to relate to the finitism of constructive
proofs. In fact, the conception of a proof itself, as a mathematical object, lacks a sufficiently
abstract formal description. We are reminded persistently that proofs are fundamentally
geometric objects and represent the finite dynamics of the system of inference ([25, 26))—yet
both geometry and dynamics, as conventionally understood in mathematics, remain elusive
within the theory. The situation is even more provocative as sheaf formulations and local
notions in the other strand of the abstraction are fundamentally geometric notions. Hence,
there is ground to question the legitimacy of constructive type theory as a foundation for the
semantics of information. For that matter one might question the claim of every proposed
system of proofs to such a foundational role (Linear Logic too)—and we see here genuine lack
of clarity: for unless we have a formalism-independent and abstract mathematical character-
ization of the dynamics of information, there may be no ground for stopping at any specific
proof-calculus as foundational.

The lack of a relationship between the local formulations in sheaf semantics, and the fini-
tary formulations of constructive type theories is underscored all the more in our work, since
the basic notion of a proof-object comes from that of a residue—which is really a represen-
tation of a partial evaluation. The partiality is under-emphasized in the construction of the
theory of constructions, and only weakly revived in the embedding within the Realizability
Topos: genuine partiality should be captured in terms of local sections of the Type-objects—
while in our case, all proof-objects turn out to be global—a consequence of going via w-Set.
In fact the lack of sensitivity to the partial is especially pronounced in the categorical con-
struction, where no special terminal property attaches to the Type {1} corresponding to
the completely undefined term €2: it shares the terminal property with any other singleton
Type—even that of normal form terms!

Some of the considerations above lead us to question the critical role given to the w-Sets
and the partial equivalence relations in our work. We may recall that this was justified a

posteriori on the ground of an elegant topos-theoretic framework within which the theory
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of constructive types and that of denotational domains could be related--specifically one in
which the least upper bound constructions of canonical denotations (of terms) could be recon-
structed. The remarkable benefit was that the denotational objects could be given a synthetic
formulation through an appropriate dominance. The specific advantage of embedding in a
topos is that the types (or their completions) could be conceived of logically as (intuitionistic)
scts—and we would have a higher-order theory at our disposal. This was acsthetically satis-
fying in our case, since the Types were constructed basically from denotations, and thus we
could, starting from the latter, arrive at a rudimentary and abstract (higher-order) logic of
program denotations. An attempt had been made earlier by Abramsky ([2]) in this direction
on the basis of the Stone Duality, where the logic was essentially a weak second-order one.
Topos-theoretic models of impredicative type theories are traditionally obtained in two
ways: the first is through the classifying topos of the theory category ([62, 21])—which has
the advantage of yielding a conservative extension of its logic (appropriately conceived); the
second is through the construction of a small complete category in the Realizability Topos
([34])—of which the internal category of the modest sets is the best-known instance. Other
models are known, though not very frequently invoked ([38, 86]). The precise relationship or
its lack, between the two model constructions is not well-understood: in fact the realizability
topos is not even a grothendieck topos. We know that the w-sets is the sub-category of
sheaves with respect to the —=-topology in the former ([33]), but we do not understand
how the topology comes to play such a canonical role in the world of effective mathematics:
the Godel translation, or considerations on decidability that prompt the double negation
offers no deep insight in the nature of effective objects, especially form the point of view of
the dynamics of information. Thus, in order to free the constructions from the contrived
character of the w-sets, or alternatively, to give a logical justification for using it within our
general program, we need to deepen the embedding framework—keeping in mind, of course,
that we need a justifiable notion of an abstract logic of programs in the topos, and not lose the
synthetic character of the objects. Perhaps in this more general framework, we could obtain
stronger completeness properties of the internal domain-theoretic objects, perhaps even full

repleteness. This is then, the speculative ground of further research.
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